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ABSTRACT
This study analyzed market risk of an international 
investment portfolio by means of a new 
methodological proposal based on Value-at-
Risk, using the covariance matrix of multivariate 
GARCH-type models and the extreme value 
theory to realize if an international diversification 
strategy minimizes market risk, and to determine 
if the VaR methodology adequately captures 
market risk, by applying Backtesting tests. To 
this end, we considered twelve international 
stock indexes, accounting for about 62% of the 
world stock market capitalization, and chose the 
period from the Dot-Com crisis to the current 
global financial crisis. Results show that the 
proposed methodology is a good alternative to 

accommodate the high market turbulence and 
can be considered as an adequate portfolio risk 
management instrument.

Keywords: Stock markets. Value at Risk. 
Multivariate GARCH models. Extreme value 
theory. Backtesting.

RESUMO

Neste estudo é analisado o risco de mercado 
de uma carteira de investimento internacional 
por meio de uma nova proposta metodológica, 
baseada no Value-at-Risk, recorrendo à matriz 
de covariâncias de modelos multivariados do 
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tipo GARCH e à teoria dos valores extremos, 
para perceber se uma estratégia de diversificação 
internacional minimiza o risco de mercado, assim 
como para verificar se a metodologia VaR capta 
adequadamente esse mesmo risco, aplicando 
testes de validação de performance. Para o 
efeito, foram selecionados 12 índices bolsistas 
internacionais, representativos de cerca de 62% 
da capitalização bolsista mundial, e escolhido o 
período compreendido entre a crise Dot-Com e a 
atual crise financeira global. Os resultados obtidos 
mostram que a proposta metodológica é uma boa 
alternativa na acomodação da elevada turbulência 
dos mercados, podendo ser considerada como 
uma ferramenta válida na gestão do risco de 
carteiras de investimento.

Palavras-chave: Mercados bolsistas. Value-at-
Risk. Modelos multivariados GARCH. Teoria dos 
valores extremos. Backtesting.

RESUMEN
Este estudio analiza el riesgo de mercado de una 
cartera de inversiones internacionales a través de 
una nueva propuesta metodológica en torno al 
valor en riesgo, usando la matriz de covarianza 
de modelos multivariados GARCH y la teoría 
de valores extremos, para ver si una estrategia 
de diversificación internacional minimiza el 
riesgo de mercado, así como para observar si la 
metodología VaR capta adecuadamente el riesgo 
de mercado, aplicando pruebas de validación. Con 
este fin, se consideraron doce índices bursátiles 
internacionales que representan aproximadamente 
el 62% de la capitalización bursátil mundial, 
eligiéndose  el período entre las crisis Dot.com y 
financiera mundial. Los resultados muestran que 
la metodología propuesta puede ser utilizada para 
acomodar la alta turbulencia de los mercados, y 
que puede ser considerada como una herramienta 
válida en la gestión del riesgo de las carteras de 
inversión.

Palabras clave: Mercados de valores. Valor en 
riesgo. Modelos multivariados GARCH. Teoría 
de los valores extremos. Backtesting.

1	 INTRODUCTION

The quantification and risk diversification 
have drawn attention from researchers and market 
professionals. The publication, in 1952, of Harry 
Markowitz’s article titled “Portfolio Selection” gave 
rise to the portfolio theory (MARKOWITZ, 
1952). This theory allows the selection of optimal 
portfolios, under the assumption that rational and 
risk-averse investors want to maximize portfolio 
profitability, compared with a given level of risk. 
Markowitz showed that investors can minimize 
risk (variance) if they select assets that do not 
have identical movements, i.e., if they include 
in their portfolio assets that are not highly 
correlated. The proposal made by Markowitz, of 
considering the variance of financial assets returns 
as a measure of risk, was universal until the end of 
the 1980s. Several different market situations, as 
the stock market crash in 1987, the bankruptcy 
of the Barrings Bank, increased volatility in stock 
markets and investment in emerging markets, 
among others, increased the need to develop risk 
measures that express potential losses.

The signing of the Basel Accord in 1988, 
strengthened the purpose of standardizing 
evaluation standards of financial institutions 
soundness and establishing mandatory minimum 
levels of capital, depending on exposure to credit 
risk of each institution, in order to minimize 
banking risks and to enable comparative analysis 
of international banking institutions. In 1996, 
a second accord was signed, known as Basel II, 
whose central objective was the issue of market 
risk, and that required that financial institutions 
maintain certain levels of prudential capital 
in order to absorb potential losses and avoid 
bankruptcy, also ensuring economic stability 
(MANGANELLI; ENGLE, 2001). With this new 
accord, financial institutions were authorized to 
adopt internal models for assessing financial risks 
and calculating equity, by means of validation 
and control by the supervisory authorities. A new 
accord, which became known as Basel III, which 
intended to redesign the banking system and 
the largest credit institutions, cited as the main 
responsible for the crisis that began in 2007, was 
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signed in 2010. This accord introduced some 
changes to the second accord, particularly in 
relation to the increase in capital requirements 
of banks and the introduction of liquidity and 
leverage standards.

The need of investors and market 
professionals having risk measures available, 
which would translate the probability of potential 
losses on investments, led to new approaches to 
risk management. Modern risk management has 
taken a significant step with the presentation of 
the Value-at-Risk (VaR) methodology in 1993, 
and the RiskMetrics methodology in 1994. In 
early 1996, the Basel Committee would consider 
using the VaR methodology to measure market 
risk, and authorized the banks to use internal 
models to estimate it. This methodology has 
revolutionized risk management, became a kind 
of benchmark in the analysis and management 
of market risk, and provided an estimate of 
the maximum potential loss that investors may 
incur, depending on the total exposure of their 
investment positions (JORION, 2007). 

Most studies assume that assume VaR 
estimates use conditional heteroskedasticity 
models, commonly known as the ARCH models, 
as a result of the work of Engle (1982), which hold 
the effects of volatility clustering and asymmetry. 
So and Yu (2006), Wu and Shieh (2007) and 
Niguez (2008) applied this approach considering 
univariate analyses. 

The multivariate models of conditional 
heteroskedasticity are presented in the literature 
as an alternative market risk analysis of investment 
portfolios (FERREIRA; LOPEZ, 2005). Its use, 
however, has been clearly less frequent than 
that of univariate models. Of the works using 
multivariate analyzes, we point out the work of 
Morimoto and Kawasaki (2008) and Caporin 
and McAleer (2012). The first one compared the 
performance of various multivariate GARCH-
type models, namely VECH, BEKK, CCC 
and the DCC, for the normal and t-student 
distributions, in forecasting the VaR of a portfolio 
investment, comprising a wide range of assets 
of the Tokyo Stock Exchange, and concluded 
that the GARCH-DCC model showed the best 

performance in the VaR forecast. The authors 
of the second work also resorted to several 
multivariate GARCH-type models to conclude 
that the performance of the models depends on 
the sample period and the type of portfolio.

According to several authors, including 
McNeil and Frey (2000), Marimoutou, Raggad, 
Trabelsi (2009), Assaf (2009) and Andreev et al. 
(2009), the Extreme Value Theory (EVT) shows 
good ability to accommodate the occurrence 
of extreme observations. However, studies that 
consider, at the same level, the multivariate 
GARCH-type models and EVT, to accommodate 
situations of high turbulence, remain unknown. 

In this research, we intend to expand 
the existing finance literature, in empirical and 
methodological terms, using various multivariate 
models of conditional heteroskedasticity 
and EVT, to estimate VaR, in order to more 
appropriately accommodate situations of high 
market turbulence, in particular those experienced 
during Dot-Com and Global Financial crises. 
On the other hand, and differently compared 
to the referred to work, which included a set of 
assets in a particular market, in this paper, we 
consider an internationally diversified investment 
portfolio, consisting of indexes representing 
various geographies and levels of development, 
particularly indexes representing European states 
under international financial assistance, in order 
to form a strong conclusion on the ability of 
these models in risk management of international 
investment portfolios, in a context of high 
volatility and turbulence. 

In order to estimate VaR, we will consider 
the Delta-Normal, GARCH-VECH, GARCH-
CCC and GARCH-BEKK approaches, assuming 
normal distribution and the t-Student distribution. 
In addition, these models will be considered, 
including, on the one hand, the assumption of 
the asymmetric effect, by specifying Threshold 
GARCH (TGARCH) and, on the other, EVT. 

This study follows the following structure: 
part 2 presents the methodology chosen; part 
3 presents information about the data and the 
empirical results, whereas part 4 briefly presents 
our main conclusions.
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2	 METHODOLOGY

2.1	 Value at risk

According to Best (1998), Value at Risk is 
the maximum amount that is expected to be lost 
in an asset or a portfolio of assets during a given 
period and for a given confidence level.

Formally, the VaR can be defined as 
follows:

[ ] á€€P => tt VaRL              (1)

in which ( )α−1  is the confidence level 
and L is the loss, i.e., the change in value of the 
portfolio.

The VaR can also be defined in terms of the 
rate distribution geometric return of the portfolio. 
Considering the probability α and assuming that 
the returns of an asset or a portfolio, R

PF
, follow 

normal distribution with mean zero and standard 
deviation σ

PF, t+1
, we have . 

According to Jorion (2007), Tsay (2005) 
and Esch, Kieffer, Lopez (2005), the t-student 
distribution gathers, however, greater consensus 
to describe the behavior of financial assets. The 

superiority of this distribution has been reported 
by several authors in different contexts and in 
many empirical studies (ANGELIDIS, BENOS, 
DEGIANNAKIS, 2004; GIOT, LAURENT, 
2003). When the returns of a portfolio of assets 
are described by the t-Student distribution, the 
VaR is given by (CHRISTOFFERSEN, 2003):

                  (2)

in which ( )dt 1−
α  is the quantile to the left of α , 

of the t-student distribution, with d  degrees of 
freedom.

Portfolio profitability,R
PF, t+1

, on day 1+t , 
is determined considering the following equation:

              (3)

in which 1, +tiR  is the return related to index i , on 
day 1+t , n  is the number of indexes comprising 
the portfolio and iw  is the weight assigned to 
index i . Accordingly, portfolio return is the 
function of relative weights assigned to indexes 
and of the returns of each index.

Portfolio variance is:

                                                       (4)

in which σ
ij,t+1

 and ρ
ij,t+1

 are the covariance and 
correlation, respectively, between asset i  and j ,  
on day 1+t . Considering that σ

ij,t+1 
= σ

ji,t+1
  and 

that ρ
ij,t+1  

= ρ
ji,t+1 

, for all i  and j , and that  
ρ

ii,t+1 
= 1 and ρ

ij,t+1 
= ρ

ji,t+1 
, for all i  and j , with 

ρ
ii,t+1 

= 1  and σ
ii,t+1 

= σ2
i,t+1

, for all i , we have:

                                         (5)

In the previous expression, w  is the 
vector of the portfolio weights and ∑ +1t is 
the covariance matrix of returns. In the case of  

12=n 12, we have:

     

                                                       (6)
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Regarding the weighting of the indexes, in 
this work we considered that they are constant over 
time and shared equally, whereby the relative weight 
of each index corresponds to 1/2 of total portfolio.

When we assume the normality of returns, 
the methodology presented above is called Delta 
Normal, and the VaR of the portfolio is given by:

                           (7)

In order to incorporate conditional 
heteroskedasticity, usually present in the indexes 
of stock markets, variance-covariance matrixes are 

estimated, using various multivariate GARCH 
models, namely the VECH, BEKK and CCC 
models, whose theoretical assumptions are 
presented in the following section.

2.2	Conditional heteroskedasticity multivariate 
models

VECH Model

The GARCH-VECH model was proposed 
by Bollerslev, Engle, Wooldrigde (1988), and can 
be written as follows:

( ) ( ) ( )∑∑
=

−
=

−− ++=
p

j
jtj

q

j
ttjt HvechBvechACHvech

11
11 ´εε                     (8)

in which tH  is related to the conditional variance 
and covariance matrix. According to Scherrer 
and Ribarits (2007), the understanding of the 
matrix becomes easier when it includes more 
than two variables, as in the case studied. The 
representation of the VECH model is based on 
the assumption that the conditional variance 
depends on the square of lagged residuals and 
the conditional covariance depends on the lagged 
cross-residuals and lagged covariance of other 
series (HARRIS, SOLLIS, 2003). In the model 
equation, A  and B  are coefficient matrixes, of 
size ( ) ( )12

112
1 +×+ NNNN , C  is a vector 

of constant terms, of size ( ) 112
1 ×+NN , and

p  and q  indicate the order number of GARCH 
and ARCH models, respectively.

Constant Conditional Correlation (CCC) model

The CCC model was proposed by 
Bollerslev (1990), and implied that the conditional 
correlation assumption is constant for the period 
t . The model covariance matrix is given by:

ttt RDDH = RDt               (9)

in which tH  is the covariance matrix, tD  is a 
diagonal matrix, whose elements comprise the 
conditional variance, h

ij, t 
of each series, at the 

time t , and R  is the coefficient matrix of constant 
linear correlation, p

ij, t
.

 Assuming the conditional normal 
distribution, the constant linear correlation 
coefficient between the series i  and j  is given by:

2
1

0

2
,

2
1

0

2
,,

0
, ˆˆˆˆˆ

−

=

−

==











= ∑∑∑

T

t
tj

T

t
titj

T

t
tiij eeeep               (10)

in which tie ,ˆ  and tje ,ˆ  are the standardized 
residuals of series i  and j , obtained by means 
of univariate estimate, using GARCH models. To 
obtain the covariance matrix, univariate models 
are estimated and standardized residuals are 
computed, which in turn serve as the basis for 
calculating linear correlation coefficients.

 One way to measure the correlation 
involves processing the residuals as in the variance-
covariance model. By definition, 
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                          (11)

Accordingly,

                                         (12)

T h e r e f o r e ,  i f ,  f o r  i n s t a n c e , 
, for any i,j, then:

     (13)

BEKK model
An alternative estimate of the conditional 

variance is BEKK (-BABA-ENGLE-KRAFT-
KRONER) model, proposed by Engle and Kroner 
(1995), which may be expressed as follows:

∑+∑+=
=

−
=

−−

p

j
jjtj

q

j
jttjt BHBAACCH

11
11 ´´´´ εε       (14)

The BEKK model guarantees that matrix 

tH  is semi-positive, unlike what happens in 
the VECH model, in which there is no such 
guarantee. In the BEKK model, A  and B  are 
matrixes of size NN × , C  is an upper triangular 
matrix of coefficients, N  is the number of series 
considered in the model, and p  and q  indicate 
the order number of GARCH and ARCH models, 
respectively.

2.3	Extreme value theory

One of the most recent methods of VaR 
calculation is based on the Extreme Value Theory 
(EVT). According to several authors, a great 
advantage of the EVT, vis-à-vis other approaches, 
is to provide good fit to the tails of distribution 
of returns (DANIELSSON, DE VRIES, 1997; 
EMBRECHTS, KLUPPERLBERG, MIKOSCH, 
1997; MCNEIL, 1998; REISS, THOMAS, 
1997).

One should consider that the probability 
of standardized return, z , reduced by the 
threshold, u , is less than a certain value x , taking 

into account that the standardized return is above 
the threshold, u .

     (15)

The standardized returns above a threshold 
should also be considered, taking into account that 
the distribution, ( )xFu , depends on the choice 
of the threshold. Using the general definition of 
conditional probability, we have

( ) { }
{ }

( ) ( )
( )uF

uFuxF

uzP

uxzuP
xF

r

r
u −

−+=
>

+≤<=
1

  
               (16)

Thus, the distribution of standardized 
returns, above the threshold, can be written as 
a function of the distribution of standardized 
returns, ( )xF .

Within the EVT, as the extreme values 
deviate from the threshold, u , converge to a 
generalized Pareto distribution (GPD), ( )βξ ,,xG . 
 This distribution is generally defined as follows:

  
              (17)

With 0>β , and

             

               (18)

in which the coefficient of asymmetry, ξ , is 
positive and represents the rate of decay of the tail, 
β  is the scale parameter and µ  is the threshold. 

Based on the methodology of McNeil 
(1999), considering the points x , with ux > , 
in the tail of the distribution. With ,uxy +=  
we have:

( ) ( ) ( )
( )uF

uFuxF
xFu −

−+=
1

                                (19)
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To obtain

( ) ( )[ ] ( )[ ]uyFuFyF u −−−−= 111                (20)

with T  being the total sample size and uT  the 
number of observations above the threshold, u . 
The term ( )uF−1  can then be estimated as the 
ratio of observations ( )TTu  above the threshold. 
On the other hand, ( )*Fu  may be obtained by the 
maximum likelihood estimator, the standardized 
observations, above a chosen threshold. Assuming 
that 0î ≠ , the distribution is

            (21)

The cumulative distribution function, equal 
to α−1 , in which there is only one probability, 
α , of obtaining losses exceeding the standardized 
quantile value, is defined implicitly by:

( ) αα −=−
− 11

1FF                                                (22)

Based on the definition of ( )*F , it can be 
resolved for the quantile so as to obtain:

( )[ ] ξ
α αµ −−

− = TTF u
1

1                                      (23)

VaR is obtained from the EVT and the 
variance model chosen, based on the following 
expression:

 
 (24)

in which α  is the confidence level of VaR. To 
estimate the VaR with an α  confidence level, we 
use the estimator EVT and a u  cutoff point, so as 
to consider a data rate, of the left tail, exceeding 

α−1 .

2.4	Evaluation of performance of var models

The methodology used in this study to 
assess the performance of VaR models assumes 
counting the number of times actual losses exceed 
the estimates resulting from VaR methodology. 

The result of this count in a given period requires 
the consideration of a certain level of confidence 
to estimate the model.

Considering the number of daily 
logarithmic returns,R

PF 
, and the number of 

forecasts calculated by VaR, for a given confidence 
level ( )αVaR  and for , 
a binary sequence is obtained, also called “Hit 
sequence”, given the number of overtakings of 

α
1+tVaR , as follows:

                (25)

The “Hit sequence” shows the value 1, the 
day 1+t , if the loss on that day exceeds the VaR 
forecasted in advance for that day. If the VaR is 
not exceeded, then the sequence takes the value 0.

From the “Hit sequence” Backtesting of 
VaR is applied. Among the major tests available, 
we point out the test of unconditional coverage, 
independence test and conditional coverage 
test, which will be discussed in the following 
paragraphs.

2.4.1	 Unconditional coverage test or Kupiec test

The unconditional coverage test or Kupiec 
(1995) test involves counting the number of times 
the VaR estimates produced are exceeded by an 
asset or a portfolio of assets, from a given sample. 
The null hypothesis of this test establishes that 
the true proportion of exceptions, π , is in line 
with the quantile of failures, α , provided by the 
VaR  model:

[ ] απ =≡tIEH :0                                          (26)

The maximum likelihood test statistic for 
this hypothesis is:

         (27)
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in which 1T  is the number of failures ( )1=tI ,  
for a given total number of days ( )tIT , 0T  
is the number of successes ( )0=tI  and π̂  
( )TT1 corresponds to the proportion of failures 
(exceptions).

2.4.2	 Independence test

Christoffersen (2003) developed the 
independence test to examine the occurrence of 
exceptions in cluster, testing the null hypothesis 
of exceptions in the model being independent 
and identically distributed (IID), i.e., that the 
probability of exceptions occurring is equal, 
regardless an exception has occurred the day 
before. The test intends to examine how the 
exceptions occur, assuming that any two elements 
of the sequence must be independent of each 
other. When this condition is not met, it is an 
indicator that the VaR model is not sensitive 
enough to accommodate changes in market risk 
(CAMPBELL, 2005).

The independence test therefore provides 
the statistical conditions that allow one to reject 
the VaR model, except when in the cluster. For 
this purpose, it is assumed that the “hit sequence” 
is dependent over time and can be described by a 
first-order Markov sequence.

The Independence hypothesis ( )1101 ππ =  
can be tested using the likelihood ratio test

              (28)

in which ( )π̂L  is the likelihood, under the 
alternative hypothesis, based on the LRuc test.

The statist ical  test  LR ind,  to the 
independence of the number of consecutive 
exceptions, in t  and 1−t , is

 
 (29)

In small sample sizes, nullity of 11T
is frequent. In such cases, theL Rind statistic is 
calculated by

      
(30)

in which 1,0, , =jiTij  i s  the number of 
observations, with j  to follow i . The probability 
of an exception happening tomorrow, considering 
that none has happened today, is given by

 ,whereas the probability of a conditional 
exception taking place tomorrow, as today an 
exception occurred, is given by . In turn, 
π  concerns the failure rate or exceptions noted.

2.4.3	 Conditional coverage test or Christoffersen test

To test the unconditional coverage and 
independence, Christoffersen (2003) developed 
the statistics LRuc and LRind .To simultaneously 
test both properties, the same author developed the 
conditional coverage test, LRcc, which is given by

               (31)

3	 DATA AND EMPIRICAL RESULTS

3.1 Data and statistics

In order to analyze the performance of 
market risk management models, market indexes 
representing the international markets were 
selected – namely European, non-European, 
developed and emerging market indexes –, 
according to the classification used by Morgan 
Stanley Capital International, and which, in 
2010, accounted for about 62% of world stock 
market capitalization, as seen in Table 1. The 
set of developed markets include European and 
non-European markets. From the European 
continent, the markets of Germany (DAX 30), 
France (CAC 40), the UK (FTSE 100), Spain 
(IBEX 35), Ireland (ISEQ Overall), Greece 
(ATG) and Portugal (20 PSI) were selected. Of 
the set of non-European developed markets, the 
USA (Dow Jones), Japan (Nikkei 225) and Hong 
Kong (Hang-Seng) were chosen. As regards 
emerging markets, Brazil (Bovespa) and India 
(Sensex) were selected. 
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TABLE 1 – Stock market capitalization, in percentage of world capitalization

USA UK France Japan Spain Brazil Germany Portugal Greece Hong Kong India Ireland

30.5 5.5 3.4 7.3 2.1 2.8 2.5 0.1 0.1 4.8 2.9 0.06

Source: World Bank (c2014)

The data used in this study was obtained 
from Econostats and cover the period from 
October 4, 1999 to June 30, 2011, in which two 
major crises in the stock markets took place, the 
crisis of technology companies and the global 
financial crisis. The time gap between these two 
crises (2003-2007) corresponded to the period 
of a general rise in values in global stock indexes.

The series of closing values of the indexes 
were transformed into return series, tr , by means 
of the application of 1n( )1ln −tt PP , in which tP  and 

1−tP  represent the closing values of a particular 
index on days t  and 1−t , respectively.

Table 2 presents the main descriptive 
statistics of each index return series, the Jarque-
Bera tests of the normality of the series, the 
stationarity tests and the LM tests of Engle (1982) 
to the presence of heteroskedasticity. 

The analysis of descriptive statistics allows 
us to draw the conclusion that only six of the 12 
indexes had positive daily average return. 

All series of returns, without exception, 
show signs of deviation from the normality 
hypothesis, as the coefficients of asymmetry and 
kurtosis are statistically different from a normal 
distribution (0 and 3, respectively). To confirm 
whether the fitting of the normal distribution is 
appropriate to the empirical distributions of the 
12 series in all study periods, we also applied the 
Jarque-Bera backtesting. Taking into account 
the respective associated probabilities (equal to 
0), we concluded that all series are statistically 
significant at 1%, clearly rejecting the hypothesis 
of normality thereof. 

TABLE 2 – Descriptive statistics of the series

  Mean Maximum Minimum Standard 
deviation Asymmetry kurtosis JB

(Prob.)
ADF 

(Prob.)
LM 

(Prob.)

ATG -0.000513 0.088129 -0.10214 0.016668 -0.154716 6.9734 (0.0000) (0.0000) (0.0000)

BOV 0.000597 0.136766 -0.145659 0.019319 -0.223056 7.6515 (0.0000) (0.0000) (0.0000)

CAC -0.00005 0.105946 -0.094715 0.015649 0.042147 7.9632 (0.0000) (0.0000) (0.0000)

DAX 0.000119 0.107975 -0.074335 0.016158 0.061832 7.2076 (0.0000) (0.0000) (0.0000)

DJ 0.000061 0.105083 -0.082005 0.012625 0.031963 10.6597 (0.0000) (0.0000) (0.0000)

FTSE -0.000006 0.093842 -0.092646 0.013034 -0.105256 9.1214 (0.0000) (0.0000) (0.0000)

HANG 0.000191 0.134073 -0.135825 0.016327 -0.007715 10.848 (0.0000) (0.0000) (0.0000)

IBEX 0.000026 0.134836 -0.108341 0.015264 0.047132 9.5441 (0.0000) (0.0000) (0.0000)

ISEQ -0.000166 0.097331 -0.139636 0.01498 -0.652159 11.0664 (0.0000) (0.0000) (0.0000)

NIKKEI -0.000205 0.094941 -0.12111 0.015462 -0.644815 9.0135 (0.0000) (0.0000) (0.0000)

PSI -0.000113 0.101959 -0.103792 0.011677 -0.223954 12.9958 (0.0000) (0.0000) (0.0000)

SENSEX 0.000483 0.159901 -0.118092 0.017047 -0.207255 9.6325 (0.0000) (0.0000) (0.0000)

Source: Author.
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In order to determine the non-stationarity or 
integration of the series, we applied the traditional 
ADF test. The null hypothesis of the test states 
that the series have a unit root, i.e., that the series 
are integrated of order 1, versus the alternative 
hypothesis that the series do not have a unit 
root. The results confirm that the values of the 
probabilities of the tests of the 12 series do not 
exceed 1%, and clearly rejects the null hypothesis 
of integration of the series, and concludes that 
they show stationary or are I (0).
To  t e s t  the  ex i s t ence  o f  cond i t iona l 
heteroskedasticity (ARCH effects), the rates of 
return of the indexes, autoregressive processes 
of first order were estimated, and LM tests of 
Engle (1982) were applied, to lag 20, residuals 
of autoregressive processes. In all cases, the 
probabilities of the LM tests allow us to conclude 
that, for a significance level of 1%, the series 
of rates of return indexes exhibit conditional 
heteroskedasticity, so the use of GARCH-type 
models proves adequate. 

3.2 Empirical results

To assess the performance of VaR models 
in capturing the risk of the 12 markets studied, 

we considered a theoretical investment portfolio, 
equally weighted, from which various multivariate 
conditional heteroskedasticity models were 
estimated, namely the VECH, BEKK and CCC 
specifications, for normal t-student distributions, 
and the asymmetrical effect, and on which VaR 
estimates were based. Finally, the EVT was 
applied in the three specifications for GARCH 
and Threshold GARCH (TGARCH) models, 
in order to incorporate the asymmetrical effect, 
and the normal and t-student distributions, in 
order to understand if it responds adequately to 
extreme variances that characterized the period 
studied. In all such cases, the estimates of VaR 
models considered confidence levels of 5%, 1% 
and 0.5%. The first confidence level follows the 
RiskMetrics methodology, the second on takes 
into account the requirements of the Basel II 
Committee, whereas the third one was chosen 
in order to realize the consequence of a more 
demanding estimate condition. 

Table 3 compares total VaR of the 
various indexes with the portfolio’s VaR for 
the different estimate models and for the three 
confidence levels. 

TABLE 3 – Comparison between portfolio var and total VaR estimates of indexes

Distribution Model
Normal Vech Tvech BEKK TBEKK CCC TCCC

C
on

fid
en

ce
 le

ve
l 0.005

Total VaR 0.0396 0.0396 0.0396 0.0395 0.0397 0.0395
Portfolio VaR 0.0279 0.0279 0.0279 0.0278 0.0280 0.0278

0.01
Total VaR 0.0358 0.0358 0.0357 0.0357 0.0358 0.0357
Portfolio VaR 0.0252 0.0252 0.0252 0.0251 0.0253 0.0251

0.05
Total VaR 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263
Portfolio VaR 0.0178 0.0178 0.0178 0.0178 0.0179 0.0178

t-student Vech Tvech BEKK TBEKK CCC TCCC

C
on

fid
en

ce
 le

ve
l 0.005

Total VaR 0.0437 0.0437 0.0437 0.0442 0.0437 0.0440
Portfolio VaR 0.0308 0.0308 0.0308 0.0311 0.0308 0.0310

0.01
Total VaR 0.0381 0.0381 0.0381 0.0384 0.0381 0.0384
Portfolio VaR 0.0269 0.0269 0.0268 0.0270 0.0269 0.0270

0.05
Total VaR 0.0255 0.0254 0.0254 0.0254 0.0255 0.0256
Portfolio VaR 0.0176 0.0176 0.0176 0.0176 0.0176 0.0177

Notes: VaR estimates presented in the table were obtained from the variance-covariance matrix of GARCH models, 
without asymmetric effect (VECH, BEKK and CCC) and asymmetric effect (TVECH, TBEKK and TCC), considering 
the confidence intervals of 99.5% (0.5) 99% (1) 95% (5).

Source: Author.



309

Rev. bus. manag., São Paulo, Vol. 16, No. 51, pp. 299-318, Apr./Jun. 2014

Multivariate Models to Forecast Portfolio Value at Risk: from the Dot-Com crisis to the global financial crisis

In all cases compared, the VaR of the 
portfolio is clearly lower than total individual 
VaR’s indexes. Therefore, there seems to be a 
reason to believe that market risk can be mitigated 
by means of diversification. Although the markets 
tend to linked closer and closer, the option for an 
investment strategy is based on the assumption 
of international diversification, which considers 
a broad set of markets, may constitute a form of 
protection against market risk.

Table 4 presents the mean of VaR estimates 
of the various models. The most obvious feature 
is that the mean values depend more on the 

distribution considered than on the forecast of 
the covariance matrix. In most cases, the mean 
VaR estimates, produced based on the t-student 
distribution, exceed those resulting from normal 
distribution, especially in the confidence levels of 
0.5% and 1%. Only VECH and TVECH-EVT 
models, these two confidence levels, and the 
TCCC-EVT model, the confidence level of 0.5%, 
do not support this superiority. For the highest 
quantile, the conclusion is contrary, revealing 
superiority of estimates based on the normal 
distribution, in 67% of cases.

TABLE 4 – Mean estimates of VaR models

Normal t-student

0.005 0.01 0.05 0.005 0.01 0.05

VECH 0.02522 0.02277 0.01610 0.02439 0.02127 0.01395

BEKK 0.02534 0.02289 0.01618 0.02745 0.02370 0.01521

CCC 0.02458 0.02220 0.01570 0.02675 0.02333 0.01530

TVECH 0.02482 0.02241 0.01585 0.03122 0.02647 0.01636

TBEKK 0.02499 0.02257 0.01596 0.02656 0.02306 0.01498

TCCC 0.02411 0.02178 0.01540 0.02676 0.02333 0.01530

VECH-TVE 0.03092 0.02522 0.01572 0.03289 0.02635 0.01575

BECK-TVE 0.03409 0.02705 0.01580 0.03546 0.02766 0.01555

CCC-TVE 0.03139 0.02542 0.01557 0.03179 0.02574 0.01577

TVECH-TVE 0.03200 0.02590 0.01585 0.03189 0.02580 0.01576

TBEKK-TVE 0.03068 0.02520 0.01597 0.03381 0.02677 0.01556

TCCC-TVE 0.03048 0.02482 0.01539 0.03047 0.02494 0.01566

Notes: VaR estimates presented in the table were obtained from the variance-covariance matrix of GARCH models, without 
asymmetric effect (VECH, BEKK, CCC) and asymmetric effect (TVECH, TBEKK and TCC) and EVT, considering the 
confidence intervals of 99.5% (0.5) 99% (1) 95% (5).

Source: Author.

Table 5 summarizes the failure rate of various 
estimate models, i.e., the percentage of times the VaR 
estimates were exceeded by daily returns as a result of 
the unexpected market events. The results presented 
in this table reveal that the models that do not resort 
to extreme value theory, whether on the assumption 
of normal distribution or t-student distribution, 
generally showed difficulties in adapting to extreme 
changes in market. 

In the case of estimates based on GARCH-
type models, only the highest level of confidence, 
in the normal distribution, produces a failure rate 

that does not exceed the respective confidence 
level. On the other hand, this is not true for 
any event in the t-student distribution, which 
is why one can conclude that their estimates are 
too conservative for various confidence levels. 
In general, the simple fact of the asymmetric 
effect does not significantly improve the previous 
situation. The incorporation of the asymmetric 
effect specification, however, has the VECH 
model record a positive change in the three 
quantiles, with the percentage of exceptions to 
be, in all cases, lower than their confidence levels. 
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The use of the extreme value theory 
leads to different conclusions from those listed 
above, about the multivariate GARCH models. 
Estimates of GARCH models and TGARCH 
models, based on the two distributions, provide 
identical conclusions, with percentages of 

exceptions below levels of confidence of 0.5% and 
1%, contrary to what happens to the confidence 
level of 5 %. This fact gives a first indication of the 
superiority of the extreme value theory compared 
to the other methods, as we shall confirm with the 
implementation of a performance test. 

TABLE 5 – Failure rate of VaR models

Normal t-student

0.005 0.01 0.05 0.005 0.01 0.05

VECH 0.00898 0.01485 0.04696 0.01209 0.02383 0.06457

BEKK 0.01174 0.01865 0.04696 0.00863 0.01623 0.05387

CCC 0.00932 0.01588 0.04938 0.00760 0.01278 0.05283

TVECH 0.00967 0.01588 0.04903 0.00311 0.00725 0.04523

TBEKK 0.00898 0.01519 0.05007 0.00829 0.01657 0.05559

TCCC 0.00967 0.01588 0.05007 0.00656 0.01140 0.05283

VECH-TVE 0.00276 0.00898 0.05007 0.00345 0.00829 0.05007

BECK-TVE 0.00311 0.00794 0.05007 0.00276 0.00760 0.05007

CCC-TVE 0.00311 0.00829 0.05007 0.00345 0.00794 0.05007

TVECH-TVE 0.00345 0.00863 0.05007 0.00345 0.00863 0.05007

TBEKK-TVE 0.00345 0.00863 0.05007 0.00311 0.00829 0.05007

TCCC-TVE 0.00276 0.00794 0.05007 0.00345 0.00794 0.05007

Notes: VaR estimates presented in the table were obtained from the variance-covariance matrix of GARCH models, without 
asymmetric effect (VECH, BEKK, CCC) and asymmetric effect (TVECH, TBEKK and TCC) and EVT, considering the 
confidence intervals of 99.5% (0.5) 99% (1) 95% (5).

Source: Author.

After estimating the different VaR models, 
Backtesting procedures were applied in order 
to reach a conclusion on the ability of these 
models to effectively manage the market risk 
of the stock markets. Firstly, we considered the 
unconditional coverage test or Kupiec test, which 
is a development of the failure rate, set by the 
Basel Committee, to oversee Banking activities. 
Secondly, the independence test was applied to test 
whether exceptions are IID. Finally, we applied 
the conditional coverage test, or Christoffersen 
test. Backtesting results are presented in tables 6 
to 13.

In the unconditional coverage test 
and for two smaller quantiles, the t-student 
distribution showed better performance than the 
normal distribution. In both distributions, the 

performance of the estimates improved at the 
highest level of confidence, with global acceptance 
levels of the models of 100% and 92% in the 
normal and t-Student distributions, respectively. 
Models that did not resort to EVT, the TCCC 
model, based on the t-student distribution, 
showed the best performance, being accepted for 
all confidence levels. In contrast, the VECH model 
(t-student) was rejected for the three quantiles. 
As for the models based on EVT, all passed the 
Kupiec test, the three levels of confidence. The 
specifications of the variance-covariance matrix 
did not reject the null hypothesis of the test, 
and supported the idea of   the superiority of the 
methodology based on the generalized Pareto 
distribution, given the methodologies based on 
the other two distributions.
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TABLE 6 – Backtesting results - GARCH model and normal distribution assumption.

VECH 
(0.5%)

VECH 
(1%)

VECH 
(5%)

BEKK 
(0.5%)

BEKK 
(1%)

BEKK 
(5%)

CCC 
(0.5%)

CCC 
(1%)

CCC  
(5%)

T0 2870 2853 2760 2862 2842 2760 2869 2850 2753

T1 26 43 136 34 54 136 27 46 143

T00 2844 2810 2636 2830 2793 2642 2842 2805 2625

T01 26 43 124 32 49 118 27 45 128

T10 26 43 124 32 49 118 27 45 128

T11 0 0 12 2 5 18 0 1 15

p 0.009 0.015 0.047 0.012 0.019 0.047 0.009 0.016 0.049

π01 0.009 0.015 0.045 0.011 0.017 0.043 0.009 0.016 0.046

π11 0.000 0.000 0.088 0.059 0.093 0.132 0.000 0.022 0.105

LRuc

7.443 5.983 0.574 19.137 17.431 0.574 8.660 8.592 0.024

(0.006) (0.014) (0.449) (0.000) (0.000) (0.449) (0.003) (0.003) (0.878)

LRind

0.471 1.296 4.415 18.613 8.663 20.192 0.508 0.092 7.696

(0.492) (0.255) (0.036) (0.000) (0.003) (0.000) (0.476) (0.761) (0.006)

LRcc

7.914 7.280 4.989 37.750 26.093 20.766 9.168 8.684 7.719

(0.019) (0.026) (0.083) (0.000) (0.000) (0.000) (0.010) (0.013) (0.021)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional coverage 
(LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of the 
GARCH-VECH GARCH-BEKK and GARCH-CCC models, assuming that returns are described by normal distribution 
and considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to the probability 
of each test.

Source: Author.

TABLE 7 – Backtesting results - GARCH model and t-student distribution assumption.

VECH 
(0.5%)

VECH 
(1%)

VECH 
(5%)

BEKK 
(0.5%)

BEKK 
(1%) BEKK (5%) CCC (0.5%) CCC (1%) CCC (5%)

T0 2861 2827 2709 2871 2849 2740 2874 2859 2743

T1 35 69 187 25 47 156 22 37 153

T00 2828 2762 2547 2847 2807 2607 2852 2824 2606

T01 33 65 162 24 42 133 22 35 137

T10 33 65 162 24 42 133 22 35 137

T11 2 4 25 1 5 23 0 2 16

π 0.012 0.024 0.065 0.009 0.016 0.054 0.008 0.013 0.053

π01 0.012 0.023 0.060 0.008 0.015 0.049 0.008 0.012 0.050

π11 0.057 0.058 0.134 0.040 0.106 0.147 0.000 0.054 0.105

LRuc

20.887 40.292 11.903 6.304 9.552 0.890 3.384 2.073 0.480

(0.000) (0.000) (0.001) (0.012) (0.002) (0.345) (0.066) (0.150) (0.488)

LRind

3.207 2.570 12.562 1.549 11.136 20.192 0.337 2.845 6.921

(0.073) (0.109) (0.000) (0.213) (0.001) (0.000) (0.562) (0.092) (0.009)

LRcc

24.094 42.862 24.465 7.852 20.687 21.082 3.721 4.918 7.402

(0.000) (0.000) (0.000) (0.020) (0.000) (0.000) (0.156) (0.086) (0.025)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional 
coverage (LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of the 
GARCH-VECH GARCH-BEKK and GARCH-CCC models, assuming that returns are described by t-Student distribution and 
considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to the probability of each test.

Source: Author.
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TABLE 8 – Backtesting results - TGARCH model and normal distribution assumption.

VECH 
(0.5%)

VECH 
(1%)

VECH  
(5%)

BEKK 
(0.5%)

BEKK 
(1%)

BEKK 
(5%)

CCC 
(0.5%)

CCC  
(1%)

CCC 
(5%)

T0 2868 2850 2754 2870 2852 2751 2868 2850 2751

T1 28 46 142 26 44 145 28 46 145

T00 2840 2804 2626 2844 2809 2624 2840 2804 2619

T01 28 46 128 26 43 127 28 46 132

T10 28 46 128 26 43 127 28 46 132

T11 0 0 14 0 1 18 0 0 13

π 0.010 0.016 0.049 0.009 0.015 0.050 0.010 0.016 0.050

π01 0.010 0.016 0.046 0.009 0.015 0.046 0.010 0.016 0.048

π11 0.000 0.000 0.099 0.000 0.023 0.124 0.000 0.000 0.090

LRuc

9.952 8.592 0.057 7.443 6.807 0.000 9.952 8.592 0.000

(0.002) (0.003) (0.811) (0.006) (0.009) (0.986) (0.002) (0.003) (0.986)

LRind

0.547 1.485 6.249 0.471 0.148 12.972 0.547 1.485 4.165

(0.460) (0.223) (0.012) (0.492) (0.701) (0.000) (0.460) (0.223) (0.041)

LRcc

10.499 10.077 6.306 7.914 6.955 12.972 10.499 10.077 4.165

(0.005) (0.006) (0.043) (0.019) (0.031) (0.002) (0.005) (0.006) (0.125)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional coverage 
(LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of the 
Threshold GARCH (VECH, BEKK and CCC) models, assuming that returns are described by normal distribution and 
considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to the probability of each test.

Source: Author.

TABLE 9 – Backtesting results - TGARCH model and t-student distribution assumption.

VECH 
(0,5%)

VECH 
(1%)

VECH 
(5%)

BEKK 
(0.5%)

BEKK  
(1%)

BEKK 
(5%)

CCC 
(0.5%)

CCC 
(1%)

CCC 
(5%)

T0 2887 2875 2765 2872 2848 2735 2877 2863 2743

T1 9 21 131 24 48 161 19 33 153

T00 2878 2854 2645 2848 2805 2596 2858 2830 2606

T01 9 21 120 24 43 139 19 33 137

T10 9 21 120 24 43 139 19 33 137

T11 0 0 11 0 5 22 0 0 16

π 0.003 0.007 0.045 0.008 0.017 0.056 0.007 0.011 0.053

π01 0.003 0.007 0.043 0.008 0.015 0.051 0.007 0.012 0.050

π11 0.000 0.000 0.084 0.000 0.104 0.137 0.000 0.000 0.105

LRuc

2.411 2.444 1.428 5.245 10.554 1.844 1.291 0.545 0.480

(0.121) (0.118) (0.232) (0.022) (0.001) (0.174) (0.256) (0.460) (0.488)

LRind

0.056 0.307 3.888 0.401 10.751 15.844 0.251 0.761 6.921

(0.813) (0.580) (0.049) (0.527) (0.001) (0.000) (0.616) (0.383) (0.009)

LRcc

2.467 2.750 5.316 5.646 21.305 17.688 1.542 1.306 7.402

(0.291) (0.253) (0.070) (0.059) (0.000) (0.000) (0.463) (0.521) (0.025)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional coverage 
(LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of the 
Threshold GARCH (VECH, BEKK and CCC) models, assuming that returns are described by t-Student distribution and 
considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to the probability of each test.

Source: Author.
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TABLE 10 – Backtesting results – GARCH-EVT model and normal distribution assumption.

VECH 
(0.5%)

VECH  
(1%)

VECH 
(5%)

BEKK 
(0.5%)

BEKK 
(1%)

BEKK 
(5%)

CCC 
(0.5%)

CCC  
(1%)

CCC 
(5%)

T0 2888 2870 2751 2887 2873 2751 2887 2872 2751

T1 8 26 145 9 23 145 9 24 145

T00 2880 2844 2621 2878 2850 2625 2878 2848 2622

T01 8 26 130 9 23 126 9 24 129

T10 8 26 130 9 23 126 9 24 129

T11 0 0 15 0 0 19 0 0 16

π 0.003 0.009 0.050 0.003 0.008 0.050 0.003 0.008 0.050

π01 0.003 0.009 0.047 0.003 0.008 0.046 0.003 0.008 0.047

π11 0.000 0.000 0.103 0.000 0.000 0.131 0.000 0.000 0.110

LRuc

3.481 0.316 0.000 2.411 1.333 0.000 2.411 0.911 0.000

(0.062) (0.574) (0.986) (0.121) (0.248) (0.986) (0.121) (0.340) (0.986)

LRind

0.044 0.471 7.200 0.056 0.368 15.192 0.056 0.401 8.969

(0.833) (0.492) (0.007) (0.813) (0.544) (0.000) (0.813) (0.527) (0.003)

LRcc

3.526 0.788 7.200 2.467 1.701 15.192 2.467 1.312 8.970

(0.172) (0.675) (0.027) (0.291) (0.427) (0.001) (0.291) (0.519) (0.011)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional coverage 
(LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of the GARCH 
(VECH, BEKK and CCC) and EVT models, assuming that returns are described by normal distribution and considering 
confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to the probability of each test.

Source: Author.

TABLE 11 – Backtesting results – GARCH-EVT model and t-student distribution assumption.

VECH 
(0.5%)

VECH 
(1%)

VECH 
(5%)

BEKK 
(0.5%)

BEKK 
(1%)

BEKK 
(5%)

CCC 
(0.5%) CCC (1%) CCC (5%)

T0 2886 2872 2751 2888 2874 2751 2886 2873 2751

T1 10 24 145 8 22 145 10 23 145

T00 2876 2848 2624 2880 2852 2626 2876 2850 2622

T01 10 24 127 8 22 125 10 23 129

T10 10 24 127 8 22 125 10 23 129

T11 0 0 18 0 0 20 0 0 16

p 0.003 0.008 0.050 0.003 0.008 0.050 0.003 0.008 0.050

π01 0.003 0.008 0.046 0.003 0.008 0.045 0.003 0.008 0.047

π11 0.000 0.000 0.124 0.000 0.000 0.138 0.000 0.000 0.110

LRuc

1.563 0.911 0.000 3.481 1.842 0.000 1.563 1.333 0.000

(0.211) (0.340) (0.986) (0.062) (0.175) (0.986) (0.211) (0.248) (0.986)

LRind

0.069 0.401 12.972 0.044 0.337 17.549 0.069 0.368 8.969

(0.792) (0.527) (0.000) (0.833) (0.562) (0.000) (0.792) (0.544) (0.003)

LRcc

1.633 1.312 12.972 3.526 2.179 17.549 1.633 1.701 8.970

(0.442) (0.519) (0.002) (0.172) (0.336) (0.000) (0.442) (0.427) (0.011)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional coverage 
(LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of the 
GARCH (VECH, BEKK and CCC) and EVT models, assuming that returns are described by t-Student distribution and 
considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to the probability of each test.

Source: Author.
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TABLE 12 – Backtesting results – TGARCH-EVT model and normal distribution assumption.

VECH 
(0.5%) VECH (1%) VECH (5%)

BEKK 
(0.5%)

BEKK  
(1%)

BEKK  
(5%)

CCC 
(0.5%)

CCC  
(1%)

CCC  
(5%)

T0 2886 2871 2751 2886 2871 2751 2888 2873 2751
T1 10 25 145 10 25 145 8 23 145
T00 2876 2846 2618 2876 2846 2624 2880 2850 2619
T01 10 25 133 10 25 127 8 23 132
T10 10 25 133 10 25 127 8 23 132
T11 0 0 12 0 0 18 0 0 13
π 0.003 0.009 0.050 0.003 0.009 0.050 0.003 0.008 0.050
π01 0.003 0.009 0.048 0.003 0.009 0.046 0.003 0.008 0.048
π11 0.000 0.000 0.083 0.000 0.000 0.124 0.000 0.000 0.090

LRuc

1.563 0.573 0.000 1.563 0.573 0.000 3.481 1.333 0.000
(0.211) (0.449) (0.986) (0.211) (0.449) (0.986) (0.062) (0.248) (0.986)

LRind

0.069 0.435 2.919 0.069 0.435 12.972 0.044 0.368 4.165
(0.792) (0.509) (0.088) (0.792) (0.509) (0.000) (0.833) (0.544) (0.041)

LRcc

1.633 1.009 2.920 1.633 1.009 12.972 3.526 1.701 4.165
(0.442) (0.604) (0.232) (0.442) (0.604) (0.002) (0.172) (0.427) (0.125)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional 
coverage (LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix 
of the Threshold GARCH (VECH, BEKK and CCC) and EVT models, assuming that returns are described by normal 
distribution and considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to 
the probability of each test.

Source: Author.

TABLE 13 – Backtesting results – TGARCH-EVT model and t-student distribution assumption.

VECH 
(0.5%)

VECH  
(1%)

VECH  
(5%)

BEKK 
(0.5%)

BEKK 
(1%)

BEKK 
(5%)

CCC 
(0.5%)

CCC 
(1%)

CCC 
(5%)

T0 2886 2871 2751 2887 2872 2751 2886 2873 2751

T1 10 25 145 9 24 145 10 23 145

T00 2876 2846 2618 2878 2848 2624 2876 2850 2621

T01 10 25 133 9 24 127 10 23 130

T10 10 25 133 9 24 127 10 23 130

T11 0 0 12 0 0 18 0 0 15

π 0.003 0.009 0.050 0.003 0.008 0.050 0.003 0.008 0.050

π01 0.003 0.009 0.048 0.003 0.008 0.046 0.003 0.008 0.047

π11 0.000 0.000 0.083 0.000 0.000 0.124 0.000 0.000 0.103

LRuc

1.563 0.573 0.000 2.411 0.911 0.000 1.563 1.333 0.000

(0.211) (0.449) (0.986) (0.121) (0.340) (0.986) (0.211) (0.248) (0.986)

LRind

0.069 0.435 2.919 0.056 0.401 12.972 0.069 0.368 7.200

(0.792) (0.509) (0.088) (0.813) (0.527) (0.000) (0.792) (0.544) (0.007)

LRcc

1.633 1.009 2.920 2.467 1.312 12.972 1.633 1.701 7.200

(0.442) (0.604) (0.232) (0.291) (0.519) (0.002) (0.442) (0.427) (0.027)

Notes: This table presents the results of the unconditional coverage (LRuc), independence (LRind) and conditional coverage 
(LRcc) tests of a portfolio comprising 12 indexes and VaR estimates, obtained from the variance-covariance matrix of 
the Threshold GARCH (VECH, BEKK and CCC) and EVT models, assuming that returns are described by t-Student 
distribution and considering confidence intervals of 99.5% (0.5), 99% (1) and 95% (5). The values   in brackets refer to 
the probability of each test.

Source: Author.
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The analysis of the temporal independence 
of exceptions revealed that the models generally 
reported good performance in the two lower 
quantiles. Only the BEKK model evidenced 
difficulty detecting exceptions in clusters, in 
particular in the normal distribution. Regarding 
the highest quantile, the models showed clear 
difficulty in identifying independence, and the 
TVECH-EVT model was the only one to prove 
the ability to capture the effect of independence, 
patent in both distributions. On the other hand, 
the comparison between both distributions 
translates into very similar results, with the 
normal distribution to validate 91.7%, 91.7% and 
8.3% of models in quantiles 0.5%, 1% and 5%, 
respectively, whereas the t-Student distribution 
contributes to validate 100%, 83.3% and 8.3% of 
the models in each of said quantiles. These results 
allow the conclusion that none of the distributions 
has superiority over the other, and the models 
ability to test property of exceptions that are 
IID does not depend on the type of distribution 
considered.

The conditional coverage test, which 
combines the effects of unconditional coverage 
and independence, evidenced the superiority 
of models based on the t-student distribution 
compared to those based on the normal 
distribution, at the confidence levels of 0.5% 
and 1%, with acceptance at 83% and 75% of 
the cases for the two previous confidence levels, 
respectively, vis-à-vis the 50% acceptance in the 
normal distribution. For the highest level of 
confidence, the situation changes with the normal 
distribution (33.3%), which is higher than the 
t-student (16.7%), although in both cases the 
demonstrated performance has been very limited. 

Several different models proved their 
inability as risk management instruments, at 
the three confidence levels, in particular models 
with the assumption of normal distribution 
(BEKK, CCC, and TVECH and TBEKK). This 
also happened with some models supported 
by the t-student distribution, as was the case 

of VECH and BEKK models. Conversely, the 
TVECH (t-student), TVECH-EVT (normal 
and t-student) and TCCC-EVT (normal) models 
revealed consistent performances in the three 
quantiles. We should point out that the EVT led 
to a marked improvement in the performance of 
VaR models, especially in the lower two quantiles, 
with all the models inspired by this methodology 
passing the Christoffersen test. Regarding the 
highest confidence level, only TVECH and 
TCCC models showed good performance, the 
first in both distributions, and the second on in 
the normal distribution.

Results suggest that the most important 
element in the accuracy of estimates of VaR models 
is the use of EVT, whose theoretical genesis uses 
the generalized Pareto distribution. This situation 
highlights the importance of this approach, as 
a determining factor in the performance of the 
models, similar to results obtained by other 
authors – for example, Lopez and Walter (2001); 
in a second order of importance, the specification 
of the multivariate model appears. 

Of the set of specifications considered in 
this study, the BEKK multivariate model clearly 
presented the worst performance, while the 
TVECH-EVT model stood out positively among 
the others, and was validated in all tests and in 
both distributions, revealing therefore its ability to 
incorporate the extreme conditions experienced in 
the markets, which marked the period considered 
in this study, as a consequence of the Dot-Com 
and global financial crises.

4 C O N C L U S I O N  A N D  F U T U R E 
IMPLICATIONS

In this paper, we studied the suitability of 
VaR estimates to market conditions, considering 
a theoretical investment portfolio, comprising 
12 international stock market indexes for the 
period between the Dot-Com crisis and the 
global financial crisis. To this end, we started with 
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the covariance matrixes, generated by various 
multivariate conditional heteroskedasticity 
models, estimated in accordance with the normal 
and t-Student distributions, to predict the VaR, 
similarly to the methodologies used in other 
papers. Differently with respect to these papers, 
however, we suggested a new methodology that 
combines these models with the extreme values 
theory, as a VaR estimate methodology, in order 
to try to conveniently accommodate the high 
turbulence that characterized stock markets, 
including those representing European states 
under international financial assistance.

The comparison between the total VaR’s 
of the various indexes and the VaR of the 
investment portfolio allowed the conclusion that, 
in all events, the portfolio VaR is clearly inferior. 
This fact allows the opportunity to minimize 
market risk, when an investor bets on a strategy 
of international diversification. Although the 
link between stock markets is growing closer, a 
diversification strategy that considers a broad set 
of markets can be a form of investor protection 
against market risk.

The application of performance validation 
tests of VaR estimates reveals that the most 
important element in the accuracy of these 
estimates is the use of EVT, based on the 
generalized Pareto distribution. Then, in terms of 
importance, is the specification of the multivariate 
model. Of the set of specifications considered in 
this study, the BEKK multivariate model was 
clearly the worst in performance, whereas the 
TVECH-EVT model stood out positively from 
the others, and was validated in all tests and in both 
distributions. It revealed its ability to incorporate 
extreme market conditions experienced during the 
time period studied.

The results show that the methodology 
proposed in this paper can accommodate the 
high turbulence in the markets, and it can be seen 
as an appropriate option in the management of 
market risk. 

In future work, it may be interesting to 
use an optimization model that considers, at the 
same level, market returns and risk estimates, 
and relate the multivariate GARCH to the EVT 

models, in order to obtain additional information 
to international investors on their investment 
alternatives, taking into account the opportunities 
offered by emerging and developed markets.
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