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Abstract

Purpose – This study examines a zero-beta portfolio strategy that accounts for the 
uncertainties in expected returns and betas, with the goal of improving investment 
performance by incorporating parameter uncertainty into the optimization process.

Theoretical framework – The research is grounded in modern portfolio theory 
and robust optimization, drawing on the multifactor asset pricing model of Chen, 
Roll, and Ross (1986). It leverages the Kalman filter to estimate dynamic betas 
and their uncertainties, and incorporates analysts’ forecasts to assess expected 
returns and their associated uncertainties.

Design/methodology/approach – The study constructs two types of zero-beta 
portfolios: a long-short stochastic portfolio that maximizes the ratio of expected 
return to parameter uncertainty, and a long-short normal portfolio that focuses 
solely on maximizing expected return. Portfolio performance is evaluated using 
data from 2015 to 2022.

Findings – The results indicate that the long-short stochastic portfolios outperform 
the normal portfolios on several performance metrics. Specifically, they exhibit 
higher realized returns, lower drawdowns, and a superior realized Sharpe ratio. 
In addition, the stochastic approach yields more accurate predictions with a 
significantly lower root mean square error.

Practical & social implications of research – The findings provide insights for 
investors, fund managers, and practitioners seeking to improve portfolio stability 
and performance under uncertainty. However, reliance on analysts’ estimates should 
be approached with caution, as deviations from expected values can still occur.

Originality/value – This study contributes to the existing literature by empirically 
validating the benefits of incorporating parameter uncertainty into portfolio 
optimization.
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filter, multifactor asset pricing model.
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1 introduction

In a situation where there are no restrictions on 
taking advantage of arbitrage opportunities, consider two 
well-diversified portfolios with identical point estimates 
for betas but different expected returns. In this scenario, 
an investor can potentially make a risk-free profit by 
selling (shorting) the portfolio with the lower expected 
return and buying the portfolio with the higher expected 
return. It is worth noting that a significant challenge lies in 
identifying and constructing such portfolios. For instance, 
the efficient market hypothesis (Fama, 1970), even in its 
weak form, posits that analyzing past data may not be a 
reliable method for achieving abnormal returns.

It is important to recognize that the arbitrage 
mentioned in the previous paragraph considers the point 
estimates of the portfolio’s expected return and beta, but 
does not include their confidence intervals. Overlooking 
the uncertainty associated with these parameters can 
have adverse consequences for investors. Black (1993) 
explored this issue of neglecting estimation errors in 
detail, suggesting that many anomalies identified in the 
investment literature may be the result of poor data analysis 
practices. Furthermore, Morettin and Bussab (2017) 
emphasize that relying solely on single-point estimates 
fails to provide insights into the magnitude of potential 
errors. They recommend constructing a confidence interval 
based on the distribution of these point estimates, which 
allows for a more comprehensive assessment of the data.

By considering the uncertainties associated with 
expected returns and betas, this study aims to provide 
valuable insights into the effectiveness of the zero-beta 
portfolio strategy. Understanding the potential risks and 
rewards of statistical arbitrage in light of these estimation 
errors is crucial for informed financial decision-making.

The objective of this study is to investigate the 
zero-beta portfolio strategy. Specifically, the study is 
interested in assessing a version of this strategy that considers 
not only the point estimates of certain parameters, but 
also the associated uncertainties in expected returns and 
betas. In addition, the study compares this approach to a 
zero-beta portfolio strategy that does not factor in these 
uncertainties. The expected stock return distribution is 
predicted using analysts’ estimates and their deviations, 
while the betas and their uncertainty are calculated using 
Chen et al. (1986) multifactor pricing models based on 
the Kalman filter, a Bayesian approach to continuously 
estimate the state of a noisy system (Wells, 1996).

The study consists of five sections. Section 
2 establishes the theoretical foundations for the development 
of the model and the methodology is presented in Section 
3. Section 4 presents the results derived from the data 
and methodology outlined in Section 3. Lastly, Section 
5 discusses the findings and outlines potential future 
research directions.

2 Theoretical foundations

2.1  Portfolio optimization under 
parameter uncertainty

According to Rockafellar and Wets (1991), 
many systems that require control or analysis involve 
uncertain parameters. They suggest that when faced with a 
probabilistic distribution of unknown parameters, it may 
be appropriate to consider stochastic models.

According to Bertsimas et al. (2011), robust 
and stochastic optimization approaches take uncertainty 
into account. From a portfolio optimization perspective, 
Bertsimas et al. (2011) suggest that mean-variance models 
that rely solely on the expected return point estimate 
could result in extreme allocations and prove sensitive to 
minor perturbations and parameter estimates. They further 
recommend incorporating uncertainty in expected returns 
into optimization methods to mitigate these challenges. 
Fan et al. (2014) indicate that from a valuation perspective, 
prices are only known to lie within an interval; therefore, 
robust optimization may be useful in modeling problems 
with multiple sources of uncertainty.

In finance, robust programming involves 
considering security prices, interest rates, exchange rates, 
and portfolio optimization (Xidonas et al., 2020). While 
traditional portfolio optimization methods have laid the 
groundwork for investment strategies, recent advances 
in portfolio theory suggest incorporating additional 
factors such as liquidity and uncertainty, as highlighted 
in the multiobjective approach proposed by Garcia et al. 
(2020). This can lead to more stable results compared to 
the classical approach. However, while there is a lot of 
literature on robust portfolios, there are few empirical 
studies that show the effectiveness of this method with 
real results (Xidonas et al., 2020). The authors suggest 
that additional empirical studies should be conducted 
to determine whether robust optimization yields better 
returns when tested in real-world scenarios.
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As noted by Markowitz (1991), if an investor has 
precise knowledge of the returns of all stocks, they would 
logically choose to invest solely in the security offering 
the highest return, without any inclination to diversify. 
However, as Markowitz further argues, in a context 
marked by uncertainty, diversification becomes a rational 
and sensible strategy for investors. Maenhout (2004) 
supports this perspective by affirming that accounting for 
the uncertainty in expected returns is a prudent approach 
when making portfolio decisions. Furthermore, Goldfarb 
and Iyengar (2003) developed a model that incorporates 
parameter uncertainty that is applicable to both the classical 
mean-variance and value-at-risk approaches.

Fabozzi et al. (2009) present robust portfolio 
optimization considering mean-variance, value-at-risk, 
and conditional value-at-risk. They also note that when 
these models do not consider parameter uncertainty, they 
can suffer from data inadequacy.

The original portfolio optimization concept 
introduced by Markowitz (1952) laid the foundations 
for reliable portfolio optimization. However, the field 
has faced persistent challenges, including the sensitivity 
of portfolios to errors in parameter estimation, as well 
as the inherent difficulty in accurately forecasting future 
stock prices (Zhang et al., 2018; Kemaloglu Sibel et al., 
2018). Addressing the issue of parameter estimation errors, 
Zhang et al. (2018) argue that portfolio optimization 
models typically treat parameter values as if they are 
unquestionably accurate, thereby overlooking the associated 
estimation errors. This oversight results in portfolios that 
are highly sensitive to asset selection. In response to this 
problem, Zhang et al. (2018) propose the implementation 
of robust techniques that take into consideration both 
the portfolio optimization model and the uncertainties 
surrounding parameter values.

According to Kolm et al. (2013), estimating 
expected returns in the context of modern portfolio theory 
poses a practical challenge, mainly because “risk-return 
optimization can be very sensitive to changes in inputs.” 
The authors argue that relying solely on point estimates 
for parameters, without considering their associated 
uncertainties, may not be a wise approach. They also 
highlight that “recent portfolio optimization approaches 
have begun to account for the uncertainty surrounding 
expected returns and risk.” To mitigate this problem, the 
authors point to several techniques, including Bayesian 
methods, the Black-Litterman approach, and robust 
optimization.

Finally, Fabozzi et al. (2009) present robust 
portfolio optimization considering mean-variance, value-
at-risk, and conditional value-at-risk. The authors also 
state that these three models suffer from data inadequacy 
when they do not account for parameter uncertainty.

2.2 Statistical arbitrage considering 
parameter uncertainty

Statistical arbitrage is a self-financing investment 
strategy with a positive expected return and zero or near-
zero expected risk (Caneo & Kristjanpoller, 2020). This 
process involves long and short investment strategies for 
assets with similar and particular characteristics (Caneo 
& Kristjanpoller, 2020). Kwan (1999) states that a long-
short strategy aims to benefit investors by potentially 
profiting from undervalued and overvalued assets, which 
makes the investor’s expected profit higher than a long-
only investment.

Statistical arbitrage is a common strategy used by 
institutional investors, hedge funds, mutual funds, and 
proprietary trading firms (Zhao et al., 2019; Elliot et al., 
2005). The primary objective is to capitalize on perceived 
market imbalances, with traders attempting to take 
full advantage of these, thereby driving prices toward a 
rational equilibrium (Göncü & Akyldirim, 2016; Do & 
Faff, 2010).

The profit in a statistical arbitrage process 
materializes when asset mispricing corrects itself in 
the future (Zhao et al., 2019; Bowen & Hutchinson, 
2016). The disparity between the returns of the long and 
short portfolios is commonly referred to as the “spread” 
(Elliot et al., 2005; Kwan, 1999). Statistical arbitrage is 
recognized as a market-neutral strategy because it can 
hedge against systematic risk and its profitability is largely 
independent of market movements (Zhao et al., 2019; 
Bowen & Hutchinson, 2016; Elliot et al., 2005; Göncü 
& Akyldirim, 2016; Kwan, 1999). In the context of this 
study, the expected return of the portfolio is determined 
by the difference between the expected return of long 
positions and that of short positions.

A crucial point to consider, as asserted by Kwan 
(1999), is that achieving market neutrality does not 
necessarily require equal aggregate beta weights: this 
will offset the portfolio’s overall market risk, making it 
independent of broader market movements. This concept, 
as demonstrated by Bodie et al. (2014), is illustrated in 
Equation 1:
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( )1 0z s s s lw wβ β β= − − =  (1)

where:

zβ  is the zero-beta portfolio;

sw  is the short portfolio weight;

sβ  is the beta of the short portfolio;

sβ  is the beta of the long portfolio.
From the parameter uncertainty perspective, Anish 

(2021) notes that the covariance of statistical arbitrage is a 
point estimate, and therefore this approach is susceptible 
to estimation errors: for this reason, the author claims 
that there is a strong need to work with more than a point 
estimate, and therefore the author developed a statistical 
arbitrage model that takes into account covariance 
uncertainty. According to Anish (2021), accounting for 
covariance uncertainty in portfolio optimization leads to 
robust weightings.

2.3 The risk-return models

Continuing with the statistical arbitrage strategy 
presented in the introduction to this study, there are two 
significant sets of parameters that are essential for forming 
both the long and short portfolios: expected return and 
risk factors.

2.3.1 The expected return of securities

In this study, the expected return of securities is 
determined based on analyst estimates. Furthermore, the 
variation in estimates for specific securities is regarded 
as the uncertainty associated with this parameter. These 
assertions are supported by Xue et al. (2019), Qin et al. 
(2016), Chen, Peng, Zhang and Rosyida (2017), Huang 
(2012), Bielstein and Hanauer (2019), Balakrishnan et al. 
(2021), Fernandes et al. (2012), Echterling et al. (2015), 
Zhai and Bai (2018), Xue et al. (2019), Chen et al. (2019), 
Fabozzi et al. (2009), Goetzmann and Massa (2008), and 
Verardo (2009).

2.3.2 The factor models

An important consideration is that achieving market 
neutrality may require more than a single-factor model. 
Bowen and Hutchinson (2016) employed a statistical 
arbitrage approach that used a multifactor model that 
considered market, size, value, momentum, and reversal 
factors. This multifactor model approach was also adopted 
by Caneo and Kristjanpoller (2020). It is important to 
clarify that this study’s primary objective is not to devise 

a new risk-return model. Nevertheless, it is noteworthy 
that a well-constructed risk-return model can enhance the 
effectiveness of the statistical arbitrage process. Therefore, 
this section will provide a brief overview of this topic.

As stated by Fama and French (1997), a common 
problem in defining the cost of capital is the choice of 
model: the capital asset pricing models of Sharpe (1964) 
and Fama and French (1993) all face parameter standard 
errors. Campbell (1996) states that knowing how to measure 
the risk of an asset and what economic forces drive the 
additional reward an investor gets for bearing that risk 
are among the most fundamental questions in finance.

As mentioned by Elton and Gruber (1997), the 
single-index model with the market as a factor was the 
“earliest index model to receive wide attention,” and it 
was first presented by Markowitz and later developed 
by Sharpe (1964) (Elton & Gruber, 1997). The authors 
state that the market model is as shown in Equation 2:

it i i mt itR Rβ ε=∝ + +  (2)

where:

itR  is the return of asset i in period t;

i∝  is the exclusive expected return of asset i;

iβ  is the market sensitivity of asset i;

mtR  is the market return in period t;

itε  is the idiosyncratic risk of asset i in period t with zero 
mean and variance σ .

Elton and Gruber (1997) point out that the 
single-index model with the market as a factor has the 
following advantages: a low number of required estimates; 
the required inputs are easy for analysts to understand; 
and there is an increase in the accuracy of portfolio 
optimization compared to previous estimates. Galagedera 
(2007) notes that a large number of studies show that the 
CAPM cannot empirically explain stock returns, so other 
fundamental variables – such as size, book-to-market, 
macroeconomic variables, and price-to-earnings – have 
been incorporated into different models in an attempt to 
improve the single-factor model. However, the CAPM is still 
the most widely used pricing model by both practitioners 
and in the classroom (Jagannathan et al., 2010).

In addition, Elton and Gruber (1997) note that 
after the single-index market model was presented, many 
multi-index models have been published, the prototype 
of which is presented in Equation 3:
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1

 
J

it i i jt it
j

R Iβ ε
=

=∝ + +∑  (3)

where:

iβ  is the sensitivity of asset i to index I;
 jtI  is the jth index;
J  is the number of indexes.

Jagannathan et al. (2010) state that multifactor asset 
pricing models are particularly appealing to practitioners 
and risk managers because they are likely to provide a more 
detailed picture of the extent to which an asset is subject 
to different sources of risk. Elton and Gruber (1997) 
state that there are three types of multi-index structures: 
“1) market plus industry indexes; 2) surprises in basic 
economic indexes (e.g., production and inflation) (see 
Chen, Roll and Ross, 1986); and a portfolio of traded 
securities (e.g., an index of small minus large securities) 
(see Fama and French, 1993.”

Avanidhar (2010) reviews the literature on the 
cross-sectional risk-return model and notes that there are 
more than fifty variables that have been used to explain 
asset returns. Avanidhar (2010), in line with Elton and 
Gruber’s (1997) statement, then states that the multifactor 
risk-return models are sorted by style according to Fama 
and French (1993); factor based on macroeconomic 
influences, such as Chen et al. (1986); and the Connor 
and Korajczyk (1988, 1993) model.

Fama and French (1993) claim that the market 
beta alone cannot explain US common stock returns. 
In addition, the authors find that adding firm size and book-
to-market to the market factor increases the explanatory 
power of the model. Fama and French (1996) assert that 
even though a large number of anomalies disappear when 
the three-factor model (Fama & French, 1993) is applied, 
it can also be assumed that some irrational pricing may still 
exist. Galagedera (2007) claims that Fama and French’s 
(1993) multifactor model has been useful in explaining 
cross-sectional stock returns.

In addition to the three-factor model (Fama & 
French, 1993), Fama and French (2015) developed a five-
factor model. According to Fama and French (2015), a 
five-factor model capturing size, value, profitability, and 
investment patterns performs better on average than the 
Fama and French (1993) three-factor model. Fama and 
French (2015) explain that the five-factor model is backed 
not only by empirical evidence but also by fundamental 

issues, which is supported by Miller and Modigliani’s 
(1961) equation for the market value of a company.

Another important pricing model is the Arbitrage 
Pricing Theory proposed by Ross (1976), which takes into 
account the sensitivity of a stock/portfolio to unexpected 
news. Ehrhardt and Brigham (2019) demonstrate the APT 
equation in a very didactic way, as shown in Equation 4.

 ( ) ( )1 1 1 1i i i j j ijr r F F b F F b e= + − +…+ − +
 

(4)

where:

ir  is the realized rate of return of stock i;


ir  is the expected rate of return of stock i;

jF  is the realized value of economic factor j;

jF  is the expected value of factor j;

ijb  is the sensitivity of stock I to economic factor j;

1e  is the effect of unique events on the realized return of 
stock i.

As can be seen from Equation 4, the APT does not 
indicate the sensitivity of a stock to the announcement of 
an economic factor, but rather its sensitivity to unexpected 
news: the realized value minus the expected value of a 
given factor. Chen, Roll, and Ross (1986) subsequently 
indicated the economic factors that could be consistent 
with the APT model: interest rate – long term minus 
short term, inflation, industrial production, and the 
spread between high-grade bonds and low-grade bonds

However, Galagedera (2007) affirms that there is 
no consensus on which model is best and that the search 
for a robust asset pricing model continues. In any case, 
this study will empirically test market-neutral portfolios 
under parameter uncertainty using the Chen et al. (1986) 
model.

In addition to the choice of models for implementing 
statistical arbitrage, another critical consideration is the set 
of assumptions used to compute these models. Regardless 
of the risk-return model chosen, a critical assumption 
is whether the factors are constant or subject to change 
over time.

By analyzing the characteristics of the problem 
presented in this paper, the Kalman filter may be a useful 
tool to solve this problem for beta estimation. The Kalman 
filter is a valuable tool for estimating time-varying market 
factors, as it effectively addresses the assumption that 
these factors are dynamic rather than static over time. This 
assumption is consistent with research by Jagannathan 
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and Wang (1996) and Groenewold and Fraser (1999), 
which shows that financial factors, including asset betas, 
are not fixed but change in response to market conditions. 
Bramante and Gabbi (2006) also point to substantial 
evidence that asset betas vary over time, supporting the 
use of dynamic models such as the Kalman filter. When 
applied to market factor estimation, the Kalman filter has 
been shown to produce accurate results, especially in cases 
where traditional models such as GARCH are less effective. 
Asafo-Adjei et al. (2022) report that, based on forecast error 
metrics, the Kalman filter outperforms GARCH models 
in systematic risk estimation for twenty emerging markets.

Comparative studies also confirm the advantages 
of the Kalman filter in capturing time-varying factors. 
Mergner and Bulla (2008), for instance, assessed the 
time-varying beta of 18 sectors in Europe across several 
models and found that the Kalman filter provided superior 
estimates. Choudhry and Wu (2009) analyzed weekly 
beta estimates for UK firms and found that the Kalman 
filter approach produced more accurate results than three 
GARCH-based methods. Similarly, Mamaysky et al. (2008) 
demonstrated the superiority of the Kalman filter over the 
OLS model in beta forecasting, while Rajbhandary et al. 
(2013) found that it outperformed the moving window 
beta estimation. Grewal and Andrews (2014) note that the 
Kalman filter minimizes estimation error by reducing noise 
and other unmodeled variables through a quadratic error 
minimization function, allowing for accurate estimation 
in the presence of uncertain dynamics. This accuracy in 
capturing dynamic market behavior makes the Kalman 
filter an effective choice for optimal portfolio construction 
in settings with uncertain and evolving market factors.

3 Methodology

3.1 combining parameter uncertainties

The excess return on the well-diversified portfolio 
of the single-factor model can be expressed as Equation 5.

( ) *p p pR E R Mβ= +  (5)

where pR  is the portfolio return, ( )pE R  is the expected 
portfolio return, 

pβ  is the portfolio beta, and M  is the 
market premium. In addition, ( )pE R  can be expressed 
as Equation 6.

( ) ( )p i iE R w E R= ∑  (6)

For example, a portfolio composed of stocks of 
companies A and B, where company A has an expected 
return of 10% and represents 75% of the portfolio, while 
company B has an expected return of 5% and represents 
25% of the portfolio, results in an expected portfolio 
return of 9%. pβ  can be expressed as Equation 7.

p i iwβ β= ∑  (7)

Similarly, if Company A has a beta of 1.5 and 
Company B has a beta of 0.8, with Company A representing 
75% of the portfolio and Company B representing 25%, 
the portfolio beta equals 1.127.

The return of an asset can be measured by the 
variation in the value of that asset in addition to the 
cash flow of that asset. When transaction costs are not 
considered, the expected return of a security is equal to 
the expected price and dividends of that security divided 
by its initial price minus 1 (Kwan, 1999).

Therefore, in this paper, the expected return of 
a security is considered to be the expected variation of 
the market capitalization of that security, given by the 
ratio of the analyst’s market capitalization expectation to 
the actual market capitalization of the security at time 
t, plus the expected dividends of that company as set by 
the analysts. In addition, the parameter uncertainties are 
measured by the variance of all estimates (market cap 
and dividends).

Therefore, the expected excess return of an asset 
can be stated as shown in Equation 81.

1
1

 
ˆ ˆ

t

J

i i jt
jo o

P DR I
P P

β
+

=

= + +∑  (8)

where P̂ is the price target set by analysts and D̂ is the 
dividend target set by analysts. Therefore, the expected 
return of an asset is given by the sum of its expected price 
and expected dividends divided by its current price, plus 
the sum of the market risk factors multiplied by their 
respective betas.

Fama and French (1997) state that the valuation 
of projects and firms is very imprecise due to uncertainty 
about either the risk factors or expected cash flows. 
The parameter uncertainties in this study are measured 
by the variance of all estimates, where P̂  and D̂ are 

1 Which is consistent with the APT model (Ross, 1976) – see 
Equation 4.
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determined by the variance of the analysts’ estimates 
and iβ  is the uncertainty calculated by the Kalman filter.

Assuming that  i jtIβ  is a product of two Gaussian 
PDFs and independent of each other, this study will 
follow Smith’s (2011) method in order to combine these 
curves. Equations 9 and 10 show the Gaussian equations 
for iβ  and  jtI .

( )21
2
1

2
1

1
2

t

i e
µ

σβ
πσ

−
−

=  (9)

( )22
2
2

2
2

1 
2

t

jtI e
µ

σ

πσ

−
−

=  (10)

So, following Smith’s (2011) method, the mean 
of the product of  i jtIβ  is as shown in Equation 11:

1 2
2 22 2

1 2 2 11 2
2 2
2 1

2 2
1 2

2 2
1 1

2 2

µ µ
µσ µ σσ σµ
σ σ

σ σ

+
+

= =
++

 (11)

Moreover, based on Smith (2011), the variance 
of the product of  i jtIβ  is as shown in Equation 12:

2 2
2 2 1

2 2
2 1

2 2
1 2

1
1 1

1

σ σσ
σ σ

σ σ

= =
++

 (12)

In other words, assuming that  i jtIβ  is a product 
of two Gaussian PDFs and independent of each other, the 
variance of the mean of this product can be calculated using 
Equation 11, while its variance is obtained by Equation 12. 
It is worth mentioning that  jtI   represents the unexpected 
returns of macroeconomic factors, while iβ   denotes the 
sensitivity of a security or portfolio to unexpected news 
(surprises) related to these specific macroeconomic factors.

Considering Equations 8, 11, and 12, the mean 
and variance of iβ  are calculated from the Kalman filter, 
while the mean of  jtI  is assumed to be zero2 and the 
variance is set by the historical variance. Once the mean 
and variance of  i jtIβ  are calculated, it is still necessary 

2 The betas of the APT model are the sensitivity of a security/
portfolio to unexpected news (surprise) about a specific 
macroeconomic factor. In this study, these surprises are assumed 
to have an expected variance but zero mean.

to calculate the sum of the distribution curves of 
ˆ

o

P
P

, 

,

ˆ

o

D
P

 and 
1

 
J

i jt
j

I∑  in order to find the distribution 

curve of 
1ti

R
+

.

To do this, and assuming that the parameters 

are independent of each other, by applying the Normal 
Sum Theorem, the “mean and variance of a sum of 
statistically independent random variables is the sum of 
the means and variances of the individuals” (Lemons, 
2002). Therefore, the point estimate of 

1ti
R

+
 is the sum 

of the point estimates of 
ˆ

o

P
P

 and 
ˆ

o

D
P

, given that the 

point estimate of  i jtIβ  is 0, as claimed in the previous 

paragraph. Moreover, the variance of 
1ti

R
+

 is the sum 

of the uncertainties of 
ˆ

o

P
P

, 
ˆ

o

D
P

 and the variances of 

 i jtIβ , as explained in Equation 12. In other words, the 

variance of a sum of statistically independent variables 
is equal to the sum of their variances, a principle known 
as the variance sum law. This concept is fundamental 
in statistics and is particularly relevant in various fields, 
including modeling (Pier-Olivier & Lamardelet, 2021; 
Bobkov et al., 2023).

In addition, the uncertainty of each portfolio 
– both long and short – is calculated as proposed by 
Markowitz (1952)3. Also, the uncertainty of the long 
and short portfolios combined is calculated as the 
product of the vector of portfolio weights4 transposed 
by the portfolio variance-covariance matrix multiplied 
by the vector of portfolio weights. The optimal weights 
of each security and of the long and short portfolios are 
calculated by applying the decision criteria indicated in 
the following subsection.

Finally, as pointed out by Markowitz (1952), 
the expected return of a portfolio can be calculated as 
the weighted average of the expected return of each asset 
in that portfolio. Similarly, the portfolio beta of each 
factor will also be the weighted average of the respective 
asset’s beta.

3 By the product of the transposed vector of security weights and 
the security variance-covariance matrix multiplied by the vector 
of security weights.

4 As mentioned before, the weights of the long and short 
portfolios do not necessarily need to be equal in order to create 
a market neutral portfolio.



8

R. Bras. Gest. Neg., São Paulo, v.27, n.1, e20230279, 2025

Thiago Petchak Gomes / José Roberto Frega

3.2 The decision criteria

Considering the mean-variance approach first 
proposed by Markowitz (1952), Equation 13 shows that 
the optimal zero-beta portfolio in this study will be the 
one with the highest value of the expected return divided 
by its estimated variance, given that the individual betas 
of the long and short positions must satisfy Equation 1. 
In addition, the expected return of the portfolio will be 
determined by the difference between the expected return 
of the long position and the expected return of the short 
position, also called the expected spread.

( )* 1 *
max 

 
l l l sw Er w Er

estimated variance
− −  (13)

where:

lw  is the weight of the long portfolio;

lEr  is the expected return of the long portfolio;

sEr  is the expected return of the short portfolio.
As in Markowitz (1952), the expected returns of 

the portfolios (either long or short) are determined by the 
weighted average of the expected returns of the individual 
assets. Also, to pursue Markowitz’s (1952) maximum 
mean variance, the variance of each asset is equal to the 
sum of the combined uncertainties of its betas, market 
cap target, and dividends. Finally, this study makes a 
naive assumption for the covariance uncertainty that the 
parameter uncertainties between assets are independent.

The decision criterion of maximizing the ratio of 
the expected spread divided by the parameter uncertainties 
is supported by Kwan’s (1999) study, which proposes a 
long-short optimization approach that maximizes the 
mean-variance ratio – similar to the tangency portfolio – 
for two portfolios with market neutrality. This strategy is 
also consistent with Göncü and Akyldirim’s (2016) study, 
which considers not only the spread between two assets, 
but also the parameter uncertainties.

Given that the investor is concerned not only 
with maximizing their return but also with minimizing 
their risk, maximizing the ratio obtained by dividing 
the expected spread5 by the parameter uncertainties is 
consistent with Markowitz (1952, 1991). Also, Kemaloglu 
Sibel et al. (2018) use two different approaches to apply 
robust optimization: the risk aversion formula based on 
the classical Markowitz formula, which maximizes the 

5 The difference between the weighted expected return of the 
long and short portfolios.

expected return for a given uncertainty, and the max-
min, which minimizes the worst case scenario. It is worth 
mentioning that both approaches perform well according 
to the study of Kemaloglu Sibel et al. (2018).

3.3 Data and portfolio construction

All data such as market cap, target market cap, 
market cap estimate standard deviation, distributed 
dividends, expected dividends and their estimate standard 
deviations were collected from the Refinitiv Eikon database.

To calculate the betas using the Kalman filter, 
this study considered the weekly percentage change in 
the asset value. For the Chen et al. (1986) model, the 
following ETFs were used as proxies for the interest rate 
– long minus short term, inflation, industrial production, 
and the spread between high-grade bonds and low-grade 
bonds: iShares Short Treasury Bond ETF (SHV), iShares 
20 Plus Year Treasury Bond ETF (TLT), Schwab US 
TIPS ETF6 (SCHP), Vanguard Industrials Index Fund 
ETF (VIS), iShares iBoxx $ Inv Grade Corporate Bond 
ETF (LQD), and iShares iBoxx $ High Yield Corporate 
Bond ETF (HYG).

The initial beta estimate was calculated by applying 
a linear regression from January 18th of 2013 to December 
27th of 2013. The resulting coefficients for each asset were 
then used as an estimate for 2014, and a new linear regression 
was calculated for each asset through 2014. This study then 
applies the Kalman filter to combine and estimate the betas 
for the following years, as well as their errors.

For the portfolio construction, even though 
the annual betas and their uncertainties were calculated 
considering the Chen et al. (1986) model of more than 
two thousand securities, due to computational limitations 
to optimally weight the assets, the portfolio considers 
only ninety-nine securities per year. In this study, the 
long and short portfolios were first built at the beginning 
of 2015 and then updated at the beginning of each 
subsequent year until 2022.

As already stated, the portfolio chosen for each 
year is the one with the highest value of the expected 
spread7 divided by the combined uncertainties. Also, at 

6 Index of the Bloomberg US Treasury Inflation Protected 
Securities (TIPS).

7 The expected spread can be defined as the expected return on 
the long positions in the portfolio multiplied by the weight 
assigned to those long positions minus the expected return on 
the short positions in the portfolio multiplied by the weight 
assigned to those short positions.
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the end of each period, the portfolios are measured and 
compared with a portfolio that uses the same parameters 
but without considering their uncertainties (Supplementary 
Data 1 – Database).

Besides the objective of optimizing the ratio of 
the long-short expected return (spread) by the uncertainty, 
it is worth mentioning the other criteria applied:
a) For every risk factor8, the weight of the long 

portfolio multiplied by the value of the factor 
minus the weight of the short portfolio multiplied 
by the factor must be equal to zero, in accordance 
with Equation 1.

b) The weight of the short portfolio is equal to one 
minus the weight of the long portfolio;

c) The sum of the weights of all securities – for each 
portfolio (long and short) – is equal to one;

d) The weight of all securities cannot be negative;
e) There are two variables that can be adjusted: the 

weights of the securities and the weight of the 
overall portfolio.

8 Interest rate – long minus short term, inflation, industrial 
production, and the spread between high-grade bonds and low-
grade bonds.

Figures 1 and 2 provide a more detailed description 
of the stochastic zero-beta portfolio optimization and 
how parameter uncertainties are incorporated into the 
optimization process.

Therefore, the portfolios are constructed by 
applying the following steps:
Step 1: Collect the data from the Refinitiv Eikon database;
Step 2: Calculate the betas of the companies and their 

uncertainties for the period 2015 to 2022, 
considering the macroeconomic factors9 proposed 
by Chen et al. (1986) by applying the Kalman 
filter approach;

Step 3: Calculate the expected returns of the securities 
and their uncertainties using analysts’ estimates 
of price targets and dividends;

Step 4: Combine the parameter uncertainties of the 
securities and the uncertainties of the portfolios;

Step 5: Model optimal zero-beta portfolios annually from 
2015 to 2022 that aim to maximize the ratio of 
the expected spread divided by uncertainty, and 

9  Interest rate – long term minus short term, inflation, industrial 
production, and the spread between high-grade bond and low-
grade bonds.

Figure 1. An illustration of the stochastic zero-beta portfolio optimization process applied in this 
study, as shown on the right, and how the expected return of each asset is integrated in order to ob-
tain the total expected return of the zero-beta portfolio, as shown on the left
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others for the same period that maximize the 
expected spread but neglect uncertainty;

Step 6: Analyze the realized returns of the portfolios.
In addition, steps 2-6 were conducted entirely 

using Excel (Supplementary Data 1).

4 Results

The first and third columns of Table 1 show the 
portfolio’s expected spread10 after running the optimization 
tool with parameter uncertainties (first column) and without 
parameters uncertainties (third column). In addition, the 
second and fourth columns show the realized spread11 
of the respective portfolios. From now on, the zero-beta 
portfolios that maximized the ratio between the expected 
spread and the parameter uncertainties will be referred 

10 The expected spread can be defined as the expected return of 
the long positions in the portfolio multiplied by the weight 
assigned to those long positions minus the expected return of 
the short positions in the portfolio multiplied by the weight 
assigned to those short positions.

11 The realized spread can be defined as the realized return of 
the long positions in the portfolio multiplied by the weight 
assigned to those long positions minus the realized return of 
the short positions in the portfolio multiplied by the weight 
assigned to those short positions.

to as long-short stochastic portfolios, while the zero-beta 
portfolios that simply maximized the expected spread 
without considering the parameter uncertainties will be 
referred to as long-short normal portfolios.

As shown in Table 1, the actual returns realized 
each year differed significantly from the expected returns 
initially projected for the portfolio. In each case, the realized 
returns fell considerably short of the expected values, 
and in some cases, they even turned out to be negative. 
Several factors could have contributed to these disparities, 
including inaccurate forecasts of expected returns and the 
possible omission of other critical risk factors from the 
model. Regardless of the exact underlying causes, future 
research should delve deeper into the analysis of these 
differences to gain a more comprehensive understanding.

Table 1 presents results that favor the long-
short stochastic portfolio over the long-short normal 
portfolio. In particular, the former shows significantly 
lower drawdowns, with negative returns of 0.17% and 
3.58% in 2015 and 2016, respectively, compared to the 
latter, which experienced negative returns of 8.11% and 
18.10% in the same years. In most years, the long-short 
stochastic portfolio consistently had smaller negative 
realized spreads compared to the long-short normal 

Figure 2. An illustration of the stochastic zero-beta portfolio optimization process applied in this 
study, as shown on the right, and how the parameter uncertainties are integrated into the optimiza-
tion process in order to obtain the total uncertainty of the zero-beta portfolio, as shown on the left
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portfolio. This indicates more stable performance with 
fewer extreme deviations between expected and realized 
spreads, suggesting that the stochastic approach may 
provide a more reliable return profile over time.

A significant result of this research concerns the 
computed root mean square error of both portfolios. 
The stochastic portfolio yielded a considerably smaller 
root mean square error, as shown in Table 2. As a result, 
when we compared the stochastic portfolio to the normal 
portfolio, we found that the stochastic portfolio had a 
substantially lower root mean square error – 11.34% 
compared to 52.47%. This indicates that the predictions 
for the stochastic portfolio were, on average, much closer 
to the actual results, suggesting that it may be a more 
accurate and reliable choice.

As expected, the long-short stochastic portfolios 
exhibit greater stability over time than the long-short 
normal portfolios. Specifically, the long-short normal 
portfolios tend to concentrate their investments in just a 
few securities, while the long-short stochastic portfolios 
are more diversified.

Table 3 compares the uncertainties of the long-short 
stochastic (column 2) and normal (column 3) portfolios 
over time with the realized standard deviations of the 
long-short stochastic (column 4) and normal (column 
5) portfolios.

Since the long-short stochastic portfolio had a 
higher cumulative realized spread from 2015 to 2022 and 
a lower standard deviation than the long-short normal 
portfolio, the stochastic portfolio resulted in a higher 
ratio of realized spread to variance, as shown in Table 4. 
The total realized spread for the long-short stochastic 

portfolio was 1.94%, excluding transaction costs, while 
the long-short normal portfolio had a realized spread of 
-29.9%, also excluding transaction costs. However, it is 
essential to include transaction costs to get a clearer picture 
of the net performance of the two strategies. For this, the 
study refers to Lesmond et al. (1999), who suggest an 
average transaction cost of 1.2% for large-cap companies.

Table 5 compares the two portfolios based on 
their Sharpe ratios. Using a 10-year constant maturity U.S. 
Treasury yield of 2.17% for January 1st of 2015 as the 
risk-free rate (Federal Reserve Bank of St. Louis, 2024), 
and factoring in the total realized spread after estimated 
transaction costs along with each portfolio’s standard 
deviation, the long-short stochastic portfolio has a higher 
Sharpe ratio than the long-short normal portfolio.

Finally, Table 6 summarizes the key findings, 
particularly the advantages of the stochastic portfolio 

Table 1 
Portfolio Expected vs. Realized Spread Comparison (2015–2022). This table shows expected and 
realized spreads for both portfolio types, highlighting the reduced negative realized spreads in 
the stochastic portfolio, which generally indicates more resilient performance

Year
long-short stochastic 

portfolio expected 
spread

long-short stochastic 
portfolio realized spread

long-short normal 
portfolio expected 

spread

long-short normal 
portfolio realized spread

2015 13.24% -0.17% 27.41% -8.11%
2016 11.88% -3.58% 79.57% -18.10%
2017 9.57% 5.09% 43.65% 2.20%
2018 6.78% 2.24% 30.60% -1.46%
2019 7.31% -1.25% 70.57% -3.39%
2020 9.35% -2.03% 45.54% -6.53%
2021 17.48% 3.56% 43.78% -0.75%
2022 21.00% -1.63% 44.62% 3.20%

Table 2 
Annualized root square error for the sto-
chastic and normal portfolios.

Year
Root square error: 

long-short stochastic 
portfolio

Root square error: 
long-short normal 

portfolio
2015 13.41% 35.51%
2016 15.46% 97.66%
2017 9.57% 43.65%
2018 6.78% 30.60%
2019 7.31% 70.57%
2020 9.35% 45.54%
2021 17.48% 43.78%
2022 21.00% 44.62%
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over the normal portfolio. It is important to emphasize 
that all results in this study were obtained using Excel to 
run the analysis (Supplementary Data 1).

5 Discussion and future studies

The findings of this study indicate that accounting 
for the uncertainties associated with parameter estimation 
in the construction of investment portfolios appears to 
yield significant benefits for investors, fund managers, 
and industry practitioners. Portfolios constructed using 
zero-beta models that incorporate parameter uncertainties 
consistently exhibited lower ex-post root mean square 
errors for each individual year analyzed, resulting in 
a lower overall root mean square error over the entire 
assessment period. These findings suggest that forecasting 
models for portfolio optimization that explicitly account 
for parameter uncertainties tend to produce more accurate 
ex-post predictions.

Moreover, portfolios that incorporate parameter 
uncertainties had lower ex-post drawdowns and standard 
deviations, indicating greater stability for investors, and 
higher Sharpe ratios, suggesting better risk-adjusted returns. 
Furthermore, the inclusion of parameter uncertainty 
considerations into portfolio construction led to higher 
realized returns compared to portfolios that did not 

incorporate such uncertainties. This unexpected outcome 
merits further comprehensive quantitative and qualitative 
investigation in future research endeavors.

The long-short stochastic portfolio formulated as 
part of this research showed an overall positive cumulative 
return over the period from 2015 to 2022. However, it 
is worth noting that there were specific years within this 
time frame where returns turned negative. These empirical 
findings are consistent with the assertions of Do and Faff 

Table 3 
Uncertainties of the long-short portfolios (stochastic and normal) versus the realized standard 
deviations of the long-short portfolios (stochastic and normal).

Year
Uncertainty of the long-
short stochastic portfolio 

model

Uncertainty of the long-
short normal portfolio 

model

Stochastic zero-beta 
realized standard deviation 

per year

Non-stochastic zero-beta 
standard deviation per year

2015 0.000513149 0.099929997 0.15% 0.47%
2016 0.001614254 0.006214903 0.17% 0.48%
2017 0.002067432 0.003476831 0.19% 0.75%
2018 0.003172529 0.003700321 0.33% 0.49%
2019 0.002854613 0.001537929 0.21% 0.32%
2020 0.00197555 0.002860773 0.36% 1.29%
2021 0.002029139 0.000232843 0.26% 1.06%
2022 0.002052856 0.000859583 0.26% 0.51%

Table 4 
Portfolio return and standard deviation.

Portfolio total realized spread minus 
estimated transaction costs Standard deviation Realized spread divided by 

variance
Long-short stochastic 0.74% 0.256% 1,135.94
Long-short normal -31.10% 0.744% (5,611.53)

Source: Prepared by the authors.

Table 5 
Sharpe ratio

Portfolio Sharpe ratio
Long-short stochastic (9.58)
Long-short normal (44.69)

Table 6 
Summary of key findings

Metric
long-short 
stochastic 
portfolio

long-short 
normal 

portfolio
Diversification High Low

Root mean square error Lower Higher
Sharpe ratio Higher Lower
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(2010), who claim that statistical arbitrage, which used 
to be a profitable strategy over a long time horizon, has 
experienced a declining trend in profitability. Consequently, 
investors, fund managers, and industry practitioners are 
advised to exercise caution and circumspection when 
considering the application of the statistical arbitrage 
strategy elucidated in this study.

As shown, the stochastic portfolios showed 
different performance from the non-stochastic portfolio in 
different years. This variation is largely due to the fact that 
the normal portfolio is composed of fewer assets, making 
it more susceptible to fluctuations in individual asset 
performance. This concentration increases its sensitivity to 
specific asset movements, resulting in greater variability in 
returns. Consequently, this sensitivity partly explains why 
the stochastic portfolios outperformed or underperformed 
the non-stochastic portfolio in certain years.

Throughout the process, computational limitations 
were a challenge. Although it was possible to calculate 
expected returns, market factors, and uncertainties for 
all US public companies, computational constraints 
required limiting the number of assets analyzed in the 
portfolio optimization process. To address this issue, the 
solution was to limit the portfolios by selecting only the 
99 largest assets each year.

For subsequent research, the inclusion of additional 
risk factors, such as those proposed in the five-factor asset 
pricing model postulated by Fama and French (2015), could 
provide a more nuanced understanding of the risk-return 
profile of the strategy. Future studies could also apply multi-
objective optimization when building optimal portfolios, 
as in the work of Yadav et al. (2023) and García et al. 
(2019). In addition, the empirical analysis presented in this 
study can be further complemented by the multi-period 
portfolio selection model, as applied by Wang et al. (2023), 
allowing for a more comprehensive evaluation of portfolio 
performance over time. Furthermore, extending the temporal 
scope of the analysis to encompass longer observation 
periods and diversifying the study to alternative financial 
markets, particularly those characterized as potentially less 
efficient than the US market, as recommended by Caneo 
and Kristjanpoller (2020), may yield valuable insights into 
the robustness and adaptability of the strategy.
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