Asset Pricing: An Alternative Estimation for the Five-Factor Model
PDF (English)

Palabras clave

Asset Pricing
Five Factors
GAMLSS
Fama and French

Cómo citar

Oliveira Regis , R. ., Ospina, R., & Bernardino, W. (2024). Asset Pricing: An Alternative Estimation for the Five-Factor Model. RBGN Revista Brasileira De Gestão De Negócios, 26(03). https://doi.org/10.7819/rbgn.v26i03.4272

Resumen

Purpose – This paper introduces a comprehensive approach to estimating the five-factor model in financial markets, emphasizing flexibility and predictive improvement via GAMLSS models. We highlight the innovative potential of this methodology in asset pricing theory.

Theoretical framework – This paper seeks to evaluate the behavior of asset prices under conditions of uncertainty. Fama and French (2015) inspired us to present an extension via structured additive distributional regression using GAMLSS for the five-factor model. 

Design/methodology/approach – The sample contains information from the Brazilian financial market from 1994 to 2018. Given the violation of the conditional normal distribution commonly observed in these data, we propose adopting GAMLSS modeling. This approach allows for the flexibility of probability distributions associated with stock portfolio returns, more accurately accommodating location and scale.

Findings – GAMLSS modeling significantly enhances predictive performance, providing a robust alternative to traditional models that use the normal distribution. Furthermore, no evidence of specification error was observed using GAMLSS models, reinforcing their reliability.

Practical & social implications of research – The use of flexible GAMLSS modeling for asset pricing is proposed In the Brazilian financial market. This would improve decision-making capacity related to financial markets and asset pricing.

Originality/value – In terms of contribution, the article proposes a new estimation approach for the five-factor model using GAMLSS models.

https://doi.org/10.7819/rbgn.v26i03.4272
PDF (English)

Citas

Álvarez, B. L., & Gamero, M. J. (2012). A note on bias reduction of maximum likelihood estimates for the scalar skew t distribution. Journal of statistical planning and inference,142(2), 608-612. doi:10.1016/j.jspi.2011.08.012

Buuren, S. v. e Fredriks, M. (2001). Worm plot: A simple diagnostic device for modelling growth reference curves, Statistics in Medicine 20(8): 1259–1277. doi:10.1002/sim.746

Carvalhal, A., e Mendes, B. V. (2003). Value-at-risk and extreme returns in Asian stock markets, International Journal of Business 8(1): 1–24. doi:10.2139/ssrn.420266

Carvalho, G. A. D., Amaral, H. F., Pinheiro, J. L., & Correia, L. F. (2021). Precificação de anomalias através de modelos fatoriais: um teste em mercados da América Latina. Revista Contabilidade & Finanças, 32, 492-509. doi:10.1590/1808-057x202111640

Silva Júnior, C. P. (2023). Uma comparação entre o modelo de três fatores de Fama e French e o modelo LCAPM no mercado acionário brasileiro. Revista JRG de Estudos Acadêmicos, 6(13), 184-195. doi: 10.5281/zenodo/.7957923

Fama, E. F. e French, K. R. (1993). Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33(1): 3–56. doi:10.1016/0304-405X(93)90023-5

Fama, E. F. e French, K. R. (2015). A five-factor asset pricing model, Journal of Financial Economics 116(1): 1–22. doi:10.1016/j.jfineco.2014.10.010

Fama, E. F. e French, K. R. (2016). Dissecting anomalies with a five-factor model, Review of Financial Studies 29(1): 69–103. doi:10.1093/rfs/hhv043

Florencio, L., Cribari-Neto, F., e Ospina, R. (2012). Real estate appraisal of land lots using GAMLSS models. Chilean Journal of Statistics (ChJS), 3(1). doi:10.48550/arXiv.1102.2015

Hastie, T., & Tibshirani, R. (1995). Generalized additive models for medical research. Statistical methods in medical research, 4(3), 187-196. doi:10.1177/096228029500400302

Horn, S. D., Horn, R. A. e Duncan, D. B. (1975). Estimating heteroscedastic variances in linear models, Journal of the American Statistical Association 70(350): 380–385. doi:10.1080/01621459.1975.10479877

Jones, M. C., & Faddy, M. (2003). A skew extension of the t-distribution, with applications. Journal of the Royal Statistical Society Series B: Statistical Methodology, 65(1), 159-174. doi:10.1111/1467-9868.00378

Klein, N., T. Kneib, S. Lang, and A. Sohn (2015). Bayesian structured additive distributional regression with an application to regional income inequality in Germany. Annals of Applied Statistics 9 (2), 1024–1052. doi:10.1214/15-AOAS823

Koenker, R. (2005). Quantile Regression, Volume Economic Society Monographs. Cambridge University Press

Leite, A. L., Klotzle, M. C., Pinto, A. C. F., & da Silveira Barbedo, C. H. (2020). The Fama-French’s five-factor model relation with interest rates and macro variables. The North American Journal of Economics and Finance, 53, 101197. doi:10.1016/j.najef.2020.101197

Matsumoto, T., Bunn, D., & Yamada, Y. (2022). Pricing electricity day-ahead cap futures with multifactor skew-t densities. Quantitative Finance, 22(5), 835-860. doi:10.1080/14697688.2021.1984553

Miller, M. H., e Scholes, M. (1972). Rates of return in relation to risk: A reexamination of some recent findings. Studies in the theory of capital markets, 23, 47-48.

Moreira, K. D. S., Penedo, A. S. T., Pereira, V. S., & Ambrozini, M. A. (2021). Crises e Precificação de Ativos no Mercado de Capitais Brasileiro: Os Cinco Fatores de Fama & French. Revista Gestão Organizacional, 14(2), 95-115. doi:10.22277/rgov14i2.4893

Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3):691–692.

Nelder, J. A. e Wedderburn, R. W. (1972). Generalized linear models, Journal of the Royal Statistical Society A 135(3): 370–384. doi:10.2307/2344614

Regis, R. O. (2021). Precificação de ativos: uma análise dos cinco fatores de Fama e French em modelos GAMLSS. Tese (Doutorado em Economia), Universidade Federal de Pernambuco.

Regis, R. O., Ospina, R., Bernardino, W., e Cribari-Neto, F. (2023). Asset pricing in the Brazilian financial market: five-factor GAMLSS modeling. Empirical Economics, 64(5), 2373-2409. doi:10.1007/s00181-022-02316-3

Rigby, R. A. e Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape, Journal of the Royal Statistical Society C 54(3): 507–554. doi:10.1111/j.1467-9876.2005.00510x

Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z., & De Bastiani, F. (2019). Distributions for modeling location, scale, and shape: Using GAMLSS in R. CRC press. doi:10.1201/9780429298547

Rocco, M. (2014). Extreme value theory in finance: A survey, Journal of Economic Surveys 28(1):82–108. doi:10.1111/j.1467-6419.201200744x

Ross, S. (1976). The arbitrage pricing theory. Journal of Economic Theory, 13(3), 341-360. doi: 10.1016/0022-0531(76)90046-6

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance 19(3): 425–442. doi:10.1111/j.1540-62611964tb02865.x

Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V., & De Bastiani, F. (2017). Flexible regression and smoothing: using GAMLSS in R. CRC Press.

Vieira, M. D. V., Maia, V. M., Klotzle, M. C. e Pinto, A. C. F. (2017). Modelo de cinco fatores de risco: precificando carteiras setoriais no mercado acionário brasileiro, Revista Catarinense da Ciência Contábil 16(48): 86–104. doi:10.16930/2237-7662/rcccv16n48.2376

Verster, A., & De Waal, D. J. (2013). The generalized t-distribution, a generalization to the positive tail of the t distribution. South African Statistical Journal, 47(1), 71-82.

 

Una vez aprobada la publicación del artículo, el/los autor/es cede/n los derechos de copyright a la Revista Brasileira de Gestão de Negócios – RBGN.

Es OBLIGATORIO que los autores envíen a la RBGN el formulario de Cesión de Derechos de Autor debidamente cumplimentado y firmado según el modelo: [Derechos de autor]

Las condiciones de la Cesión de Derechos de Autor indican que la Revista Brasileira de Gestão de Negócios – RBGN goza a título gratuito y en carácter definitivo de los derechos de autor patrimoniales de los artículos publicados por ella. A pesar de la Cesión de los Derechos de Autor, la RBGN faculta a los autores al uso de estos derechos sin restricciones.

Los autores se responsabilizan de los textos publicados en la RBGN.

La RBGN adopta el modelo de licencia CC-BY Creative Commons Attribution 4.0, permitiendo la redistribución y reutilización de los artículos garantizando que la autoría esté debidamente acreditada.